Search Results

Now showing 1 - 10 of 42
  • Item
    Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments
    (London [u.a.] : RSC, 2021) Smetaczek, Stefan; Pycha, Eva; Ring, Joseph; Siebenhofer, Matthäus; Ganschow, Steffen; Berendts, Stefan; Nenning, Andreas; Kubicek, Markus; Rettenwander, Daniel; Limbeck, Andreas; Fleig, Jürgen
    Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1–4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.
  • Item
    Epitaxial growth of the first two members of the Ban +1InnO2.5 n +1Ruddlesden-Popper homologous series
    (New York, NY : American Institute of Physics, 2022) Hensling, Felix V. E.; Smeaton, Michelle A.; Show, Veronica; Azizie, Kathy; Barone, Matthew R.; Kourkoutis, Lena F.; Schlom, Darrell G.
    We demonstrate the epitaxial growth of the first two members, and the n = ∞ member of the homologous Ruddlesden-Popper series of Ba n + 1 In n O 2.5 n + 1 of which the n = 1 member was previously unknown. The films were grown by suboxide molecular-beam epitaxy where the indium is provided by a molecular beam of indium-suboxide [In 2O (g)]. To facilitate ex situ characterization of the highly hygroscopic barium indate films, a capping layer of amorphous SiO 2 was deposited prior to air exposure. The structural quality of the films was assessed by x-ray diffraction, reflective high-energy electron diffraction, and scanning transmission electron microscopy.
  • Item
    Control of phase formation of (AlxGa1 - X)2O3thin films on c-plane Al2O3
    (Bristol : IOP Publ., 2020) Hassa, Anna; Wouters, Charlotte; Kneiß, Max; Splith, Daniel; Sturm, Chris; von Wenckstern, Holger; Albrecht, Martin; Lorenz, Michael; Grundmann, Marius
    In this paper, the growth of orthorhombic and monoclinic (Al x Ga1 - x )2O3 thin films on (00.1) Al2O3 by tin-assisted pulsed laser deposition is investigated as a function of oxygen pressure p(O2) and substrate temperature Tg. For certain growth conditions, defined by Tg = 580°C and p(O2) = 0.016 mbar, the orthorhombic ?-polymorph is stabilized. For Tg = 540°C and p(O2) = 0.016 mbar, the ?-, and the ß-, as well as the spinel ?-polymorph coexist, as illustrated by XRD 2?-?-scans. Further employed growth parameters result in thin films with a monoclinic ß-gallia structure. For all polymorphs, p(O2) and Tg affect the formation and desorption of volatile suboxides, and thereby the growth rate and the cation composition. For example, low oxygen pressures lead to low growth rates and enhanced Al incorporation. This facilitates the structural engineering of polymorphic, ternary (Al,Ga)2O3 via selection of the relevant process parameters. Transmission electron microscopy (TEM) studies of a ? - (Al0.13Ga0.87)2O3 thin film reveal a more complex picture compared to that derived from x-ray diffraction measurements. Furthermore, this study presents the possibility of controlling the phase formation, as well as the Al-content, of thin films based on the choice of their growth conditions. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Current Status of Carbon‐Related Defect Luminescence in GaN
    (Weinheim : Wiley-VCH, 2021) Zimmermann, Friederike; Beyer, Jan; Röder, Christian; Beyer, Franziska C.; Richter, Eberhard; Irmscher, Klaus; Heitmann, Johannes
    Highly insulating layers are a prerequisite for gallium nitride (GaN)-based power electronic devices. For this purpose, carbon doping is one of the currently pursued approaches. However, its impact on the optical and electrical properties of GaN has been widely debated in the scientific community. For further improvement of device performance, a better understanding of the role of related defects is essential. To study optically active point defects, photoluminescence is one of the most frequently used experimental characterization techniques. Herein, the main recent advances in the attribution of carbon-related photoluminescence bands are reviewed, which were enabled by the interplay of a refinement of growth and characterization techniques and state-of-the-art first-principles calculations developed during the last decade. The predicted electronic structures of isolated carbon defects and selected carbon-impurity complexes are compared to experimental results. Taking into account both of these, a comprehensive overview on the present state of interpretation of carbon-related broad luminescence bands in bulk GaN is presented.
  • Item
    Low temperature thermoluminescence of β-Ga2O3 scintillator
    (Amsterdam : Elsevier, 2022) Witkowski, Marcin E.; Drozdowski, Konrad J.; Makowski, Michał; Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Irmscher, Klaus; Schewski, Robert; Galazka, Zbigniew
    Low temperature thermoluminescence of β-Ga2O3, β-Ga2O3:Al and β-Ga2O3:Ce has been investigated. Glow curves have been analyzed quantitatively using a rate equations model in order to determine the traps parameters, such as activation energies, capture cross-sections and probabilities of recombination and retrapping.
  • Item
    Sub-6 optical-cycle Kerr-lens mode-locked Tm:Lu2O3 and Tm:Sc2O3 combined gain media laser at 2.1 μm
    (Washington, DC : Soc., 2021) Suzuki, Anna; Kränkel, Christian; Tokurakawa, Masaki
    We present a combined gain media Kerr-lens mode-locked laser based on a Tm:Lu2O3 ceramic and a Tm:Sc2O3 single crystal. Pulses as short as 41 fs, corresponding to less than 6 optical cycles, were obtained with an average output power of 42 mW at a wavelength of 2.1 μm and a repetition rate of 93.3 MHz. Furthermore, a maximum average power of 316 mW with a pulse duration of 73 fs was achieved.
  • Item
    Coherent control of electron spin qubits in silicon using a global field
    (London : Nature Publ. Group, 2022) Vahapoglu, E.; Slack-Smith, J.P.; Leon, R.C.C.; Lim, W.H.; Hudson, F.E.; Day, T.; Cifuentes, J.D.; Tanttu, T.; Yang, C. H.; Saraiva, A.; Abrosimov, N.V.; Pohl, H.J.; Thewalt, M.L.W.; Laucht, A.; Dzurak, A.S.; Pla, J.J.
    Silicon spin qubits promise to leverage the extraordinary progress in silicon nanoelectronic device fabrication over the past half century to deliver large-scale quantum processors. Despite the scalability advantage of using silicon technology, realising a quantum computer with the millions of qubits required to run some of the most demanding quantum algorithms poses several outstanding challenges, including how to control many qubits simultaneously. Recently, compact 3D microwave dielectric resonators were proposed as a way to deliver the magnetic fields for spin qubit control across an entire quantum chip using only a single microwave source. Although spin resonance of individual electrons in the globally applied microwave field was demonstrated, the spins were controlled incoherently. Here we report coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.
  • Item
    Heading for brighter and faster β-Ga2O3 scintillator crystals
    (Amsterdam : Elsevier, 2022) Drozdowski, Winicjusz; Makowski, Michał; Bachiri, Abdellah; Witkowski, Marcin E.; Wojtowicz, Andrzej J.; Swiderski, Lukasz; Irmscher, Klaus; Schewski, Robert; Galazka, Zbigniew
    Czochralski-grown β-Ga2O3 and β-Ga2O3:Si crystals with the free electron concentrations between 2.5·1016 and 4.3·1018 cm−3 have been characterized by means of pulse height and scintillation time profile measurements in order to assess their basic scintillation properties. At room temperature, with increasing free electron concentration in the studied range, the scintillation yields decrease from 8920 to 1930 ph/MeV, while the mean scintillation decay times pare down from 989 to 61 ns. However, when the brightest β-Ga2O3 sample is cooled down below 100 K, its scintillation yield exceeds 20000 ph/MeV.
  • Item
    Quasi-monocrystalline silicon for low-noise end mirrors in cryogenic gravitational-wave detectors
    (College Park, MD : APS, 2022) Kiessling, Frank M.; Murray, Peter G.; Kinley-Hanlon, Maya; Buchovska, Iryna; Ervik, Torunn K.; Graham, Victoria; Hough, Jim; Johnston, Ross; Pietsch, Mike; Rowan, Sheila; Schnabel, Roman; Tait, Simon C.; Steinlechner, Jessica; Martin, Iain W.
    Mirrors made of silicon have been proposed for use in future cryogenic gravitational-wave detectors, which will be significantly more sensitive than current room-temperature detectors. These mirrors are planned to have diameters of ≈50 cm and a mass of ≈200 kg. While single-crystalline float-zone silicon meets the requirements of low optical absorption and low mechanical loss, the production of this type of material is restricted to sizes much smaller than required. Here we present studies of silicon produced by directional solidification. This material can be grown as quasi-monocrystalline ingots in sizes larger than currently required. We present measurements of a low room-temperature and cryogenic mechanical loss comparable with float-zone silicon. While the optical absorption of our test sample is significantly higher than required, the low mechanical loss motivates research into further absorption reduction in the future. While it is unclear if material pure enough for the transmissive detector input mirrors can be achieved, an absorption level suitable for the highly reflective coated end mirrors seems realistic. Together with the potential to produce samples much larger than ≈50 cm, this material may be of great benefit for realizing silicon-based gravitational-wave detectors.
  • Item
    High-Temperature Annealing of AlGaN
    (Weinheim : Wiley-VCH, 2020) Hagedorn, Sylvia; Khan, Taimoor; Netzel, Carsten; Hartmann, Carsten; Walde, Sebastian; Weyers, Markus
    In the past few years, high-temperature annealing of AlN has become a proven method for providing AlN layers with low dislocation densities. Herein, the example of Al0.77Ga0.23N is used to investigate whether annealing can also improve the material quality of the ternary alloy. A detailed analysis of the influence of annealing temperature on structural and optical material properties is presented. It is found that with increasing annealing temperature, the threading dislocation density can be lowered from an initial value of 6.0 × 109 down to 2.6 × 109 cm−2. Ga depletion at the AlGaN surface and Ga diffusion into the AlN buffer layer are observed. After annealing, the defect luminescence between 3 and 4 eV is increased, accompanied by an increase in the oxygen concentration by about two orders of magnitude. Furthermore, due to annealing optical absorption at 325 nm (3.8 eV) occurs, which increases with increasing annealing temperature. It is assumed that the reason for this decrease in ultraviolet (UV) transmittance is the increasing number of vacancies caused by the removal of group-III and N atoms from the AlGaN lattice during annealing.