Search Results

Now showing 1 - 3 of 3
  • Item
    Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks
    (Weinheim : Wiley-VCH, 2021) Ye, Jingjing; Aftenieva, Olha; Bayrak, Türkan; Jain, Archa; König, Tobias A.F.; Erbe, Artur; Seidel, Ralf
    Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices
    (Weinheim : Wiley-VCH, 2022) Bo, Arixin; Liu, Yawei; Kuttich, Björn; Kraus, Tobias; Widmer-Cooper, Asaph; de Jonge, Niels
    Self-assembly of nanoscale structures at liquid–solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids. Varying the molecular coating of the substrate modulates short-range attraction and leads to switching between a range of different geometric structures, including hexagonal close-packed (hcp), simple hexagonal (sh), dodecahedral quasi-crystal (dqc), and body-centered cubic (bcc) lattices, as well as random distributions. Langevin dynamics simulations explain the experimental results in terms of the interplay between nanoparticle faceting, ligand shell structure, and substrate–NP interactions.
  • Item
    Hybrid Dielectric Films of Inkjet-Printable Core-Shell Nanoparticles
    (Weinheim : Wiley-VCH, 2021) Buchheit, Roman; Kuttich, Björn; González-García, Lola; Kraus, Tobias
    A new type of hybrid core-shell nanoparticle dielectric that is suitable for inkjet printing is introduced. Gold cores (dcore  ≈ 4.5 nm diameter) are covalently grafted with thiol-terminated polystyrene (Mn  = 11000 Da and Mn  = 5000 Da) and used as inks to spin-coat and inkjet-print dielectric films. The dielectric layers have metal volume fractions of 5 to 21 vol% with either random or face-centered-cubic structures depending on the polymer length and grafting density. Films with 21 vol% metal have dielectric constants of 50@1 Hz. Structural and electrical characterization using transmission electron microscopy, small-angle X-ray scattering, and impedance spectroscopy indicates that classical random capacitor-resistor network models partially describe this hybrid material but fail at high metal fractions, where the covalently attached shell prevents percolation and ensures high dielectric constants without the risk of dielectric breakdown. A comparison of disordered to ordered films indicates that the network structure affects dielectric properties less than the metal content. The applicability of the new dielectric material is demonstrated by formulating inkjet inks and printing devices. An inkjet-printed capacitor with an area of 0.79 mm2 and a 17 nm thick dielectric had a capacitance of 2.2±0.1 nF@1 kHz .