Search Results

Now showing 1 - 10 of 123
  • Item
    Membrane Functionalization in Pilot Scale: Roll‐to‐Roll Electron Beam System with Inline Contact Angle Determination
    (Weinheim : Wiley-VCH, 2021) Schulze, Agnes; Drößler, Lutz; Weiß, Steffen; Went, Marco; Abdul Latif, Amira; Breite, Daniel; Fischer, Kristina
    To increase the permeation performance and antifouling properties of polymer membranes, a one-step reaction using electron irradiation was developed. This process combines the surface activation of the membrane polymer and the simultaneous permanent immobilization of hydrophilic molecules. This technology can be applied to various polymers, flat sheet/hollow fiber membranes and all pore ranges. The roll-to-roll system developed for this enables all process steps including inline analysis for quality control of the membrane surface in a continuously operated system. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH
  • Item
    Enlightening Materials with Photoswitches
    (Weinheim : Wiley-VCH, 2020) Goulet-Hanssens, Alexis; Eisenreich, Fabian; Hecht, Stefan
    Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility
    (Weinheim : Wiley-VCH, 2021) Shi, Huanhuan; Fu, Shuai; Liu, Yannan; Neumann, Christof; Wang, Mingchao; Dong, Haiyun; Kot, Piotr; Bonn, Mischa; Wang, Hai I.; Turchanin, Andrey; Schmidt, Oliver G.; Shaygan Nia, Ali; Yang, Sheng; Feng, Xinliang
    Overcoming the intrinsic instability and preserving unique electronic properties are key challenges for the practical applications of black phosphorus (BP) under ambient conditions. Here, it is demonstrated that molecular heterostructures of BP and hexaazatriphenylene derivatives (BP/HATs) enable improved environmental stability and charge transport properties. The strong interfacial coupling and charge transfer between the HATs and the BP lattice decrease the surface electron density and protect BP sheets from oxidation, resulting in an excellent ambient lifetime of up to 21 d. Importantly, HATs increase the charge scattering time of BP, contributing to an improved carrier mobility of 97 cm2 V-1 s-1 , almost three times of the pristine BP films, based on noninvasive THz spectroscopic studies. The film mobility is an order of magnitude larger than previously reported values in exfoliated 2D materials. The strategy opens up new avenues for versatile applications of BP sheets and provides an effective method for tuning the physicochemical properties of other air-sensitive 2D semiconductors.
  • Item
    Supercharged Proteins and Polypeptides
    (Weinheim : Wiley-VCH, 2020) Ma, Chao; Malessa, Anke; Boersma, Arnold J.; Liu, Kai; Herrmann, Andreas
    Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid–fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Digital Electrochemistry for On-Chip Heterogeneous Material Integration
    (Weinheim : Wiley-VCH, 2021) Bao, Bin; Rivkin, Boris; Akbar, Farzin; Karnaushenko, Dmitriy D.; Bandari, Vineeth Kumar; Teuerle, Laura; Becker, Christian; Baunack, Stefan; Karnaushenko, Daniil; Schmidt, Oliver G.
    Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.
  • Item
    A New Highly Anisotropic Rh-Based Heusler Compound for Magnetic Recording
    (Weinheim : Wiley-VCH, 2020) He, Yangkun; Fecher, Gerhard H.; Fu, Chenguang; Pan, Yu; Manna, Kaustuv; Kroder, Johannes; Jha, Ajay; Wang, Xiao; Hu, Zhiwei; Agrestini, Stefano; Herrero-Martín, Javier; Valvidares, Manuel; Skourski, Yurii; Schnelle, Walter; Stamenov, Plamen; Borrmann, Horst; Tjeng, Liu Hao; Schaefer, Rudolf; Parkin, Stuart S.P.; Coey, John Michael D.; Felser, Claudia
    The development of high-density magnetic recording media is limited by superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat-assisted magnetic recording was developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here, Rh2CoSb is introduced as a new hard magnet with potential for thin-film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJ m−3 is combined with a saturation magnetization of μ0Ms = 0.52 T at 2 K (2.2 MJ m−3 and 0.44 T at room temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth-free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 μB on Co, which is hybridized with neighboring Rh atoms with a large spin–orbit interaction. Moreover, the pronounced temperature dependence of the anisotropy that follows from its Tc of 450 K, together with a thermal conductivity of 20 W m−1 K−1, make Rh2CoSb a candidate for the development of heat-assisted writing with a recording density in excess of 10 Tb in.−2. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Specific Signal Enhancement on an RNA-Protein Interface by Dynamic Nuclear Polarization
    (Weinheim : Wiley-VCH, 2023) Aladin, Victoria; Sreemantula, Arun K.; Biedenbänder, Thomas; Marchanka, Alexander; Corzilius, Björn
    Sensitivity and specificity are both crucial for the efficient solid-state NMR structure determination of large biomolecules. We present an approach that features both advantages by site-specific enhancement of NMR spectroscopic signals from the protein-RNA binding site within a ribonucleoprotein (RNP) by dynamic nuclear polarization (DNP). This approach uses modern biochemical techniques for sparse isotope labeling and exploits the molecular dynamics of 13C-labeled methyl groups exclusively present in the protein. These dynamics drive heteronuclear cross relaxation and thus allow specific hyperpolarization transfer across the biomolecular complex's interface. For the example of the L7Ae protein in complex with a 26mer guide RNA minimal construct from the box C/D complex in archaea, we demonstrate that a single methyl-nucleotide contact is responsible for most of the polarization transfer to the RNA, and that this specific transfer can be used to boost both NMR spectral sensitivity and specificity by DNP.
  • Item
    Lumped Parameter Model for Silicon Crystal Growth from Granulate Crucible
    (Weinheim : Wiley-VCH, 2020) Lorenz-Meyer, M. Nicolai L.; Menzel, Robert; Dadzis, Kaspars; Nikiforova, Angelina; Riemann, Helge
    In the present paper, a lumped parameter model for the novel Silicon Granulate Crucible (SiGC) method is proposed, which is the basis for a future model-based control system for the process. The model is analytically deduced based on the hydromechanical, geometrical, and thermal conditions of the process. Experiments are conducted to identify unknown model parameters and to validate the model. The physical consistency of the model is verified using simulation studies and a prediction error of below 2% is reached. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Ruthenium-Catalyzed Site-Selective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles
    (Weinheim : Wiley-VCH, 2020) Li, Yang; Neumann, Helfried; Beller, Matthias
    Introducing (per)fluoroalkyl groups into arenes continues to be an interesting, but challenging area in organofluorine chemistry. We herein report an ortho-selective C−H perfluoroalkylation including trifluoromethylations of anilines and indoles without the need of protecting groups using RfI and RfBr as commercially available reagents. The availability and price of the starting materials and the inherent selectivity make this novel methodology attractive for the synthesis of diverse (per)fluoroalkylated building blocks, for example, for bioactive compounds and materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
    (Weinheim : Wiley-VCH, 2020) Ditte, Kristina; Perez, Jonathan; Chae, Soosang; Hambsch, Mike; Al-Hussein, Mahmoud; Komber, Hartmut; Formanek, Peter; Mannsfeld, Stefan C.B.; Fery, Andreas; Kiriy, Anton; Lissel, Franziska
    Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers—semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)—in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V−1 s−1, in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V−1 s−1). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH