Search Results

Now showing 1 - 10 of 56
  • Item
    A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic Heterocycles
    (Weinheim : Wiley-VCH, 2023) Bauer, Christof; Müller, Felix; Keskin, Sercan; Zobel, Mirijam; Kempe, Rhett
    Nanostructured earth abundant metal catalysts that mediate important chemical reactions with high efficiency and selectivity are of great interest. This study introduces a synthesis protocol for nanostructured earth abundant metal catalysts. Three components, an inexpensive metal precursor, an easy to synthesize N/C precursor, and a porous support material undergo pyrolysis to give the catalyst material in a simple, single synthesis step. By applying this catalyst synthesis, a highly active cobalt catalyst for the general and selective hydrogenation of aromatic heterocycles could be generated. The reaction is important with regard to organic synthesis and hydrogen storage. The mild reaction conditions observed for quinolines permit the selective hydrogenation of numerous classes of N-, O- and S-heterocyclic compounds such as: quinoxalines, pyridines, pyrroles, indoles, isoquinoline, aciridine amine, phenanthroline, benzofuranes, and benzothiophenes.
  • Item
    A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment
    (Cambridge : RSC Publ., 2022) Gemmer, Lea; Hu, Qiwei; Niebuur, Bart-Jan; Kraus, Tobias; Balzer, Bizan N.; Gallei, Markus
    Functional amphiphilic block copolymers (BCPs) are versatile, smart, and promising materials that are often used as soft templates in nanoscience. BCPs generally feature the capability of microphase-separation leading to various interesting morphologies at the nanometer length scale. Materials derived from BCPs can be converted into porous structures while retaining the underlying morphology of the matrix material. Here, a convenient and scalable approach for the fabrication of porous functional polyvinylpyridines (P2VP) is introduced. The BCP polyisoprene-block-P2VP (PI-b-P2VP) is obtained via sequential anionic polymerization of the respective monomers and used to form either BCP films in the bulk state or a soft template in a composite with cellulose fibers. Cross-linking of the BCPs with 1,4-diiodobutane is conducted and subsequently PI domains are selectively degraded inside the materials using ozone, while preserving the porous and tailor-made P2VP nanostructure. Insights into the feasibility of the herein presented strategy is supported by various polymer characterization methods comprising nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). The resulting bulk- and composite materials are investigated regarding their morphology and pore formation by scanning electron microscopy (SEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). Furthermore, chemical conversions were examined by energy dispersive X-ray spectroscopy (EDS), attenuated total reflection Fourier-transformation infrared spectroscopy (ATR-FTIR) and water contact angle (WCA) measurements. By this convenient strategy the fabrication of functional porous P2VP in the bulk state and also within sustainable cellulose composite materials is shown, paving the synthetic strategy for the generation of a new family of stimuli-responsive sustainable materials.
  • Item
    Flexible and transparent electrodes imprinted from Au nanowires: stability and ageing
    (Cambridge : Royal Society of Chemistry, 2022) Engel, Lukas F.; González-García, Lola; Kraus, Tobias
    We study the stability of flexible transparent electrodes (FTEs) that were self-assembled from ultra-thin gold nanowires (AuNW) by direct nanoimprinting of inks with different particle concentrations (1 to 10 mg mL−1). The resulting lines were less than 3 μm wide and contained bundles of AuNW with oleylamine (OAm) ligand shells. Small-angle X-ray scattering confirmed a concentration-independent bundle structure. Plasma sintering converted the wire assemblies into lines with a thin metal shell that contributes most to electrical conductivity and covers a hybrid core. We studied the relative change in sheet resistance and the morphology of the FTEs with time. The sheet resistance increased at all concentrations, but at different rates. The metal shell aged by de-wetting and pore formation. The hybrid core de-mixed and densified, which led to a partial collapse of the shell. Residual organics migrated through the shell via its pores. Lines formed at low concentration (cAu = 2 to 3 mg mL−1) contained less residual organics and aged slower than those formed at high cAu ≥ 5 mg mL−1. We passivated the conductive shell with thin, adsorbed layers of PEDOT:PSS and found that it decelerated degradation by slowing surface diffusion and hindering further rupture of the shell. Thick capping layers prevented degradation entirely and stopped pore formation.
  • Item
    Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
    (London [u.a.] : RSC, 2023) Bornamehr, Behnoosh; Presser, Volker; Zarbin, Aldo J. G.; Yamauchi, Yusuke; Husmann, Samantha
    Hexacyanometallates, known as Prussian blue (PB) and its analogues (PBAs), are a class of coordination compounds with a regular and porous open structure. The PBAs are formed by the self-assembly of metallic species and cyanide groups. A uniform distribution of each element makes the PBAs robust templates to prepare hollow and highly porous (hetero)nanostructures of metal oxides, sulfides, carbides, nitrides, phosphides, and (N-doped) carbon, among other compositions. In this review, we examine methods to derive materials from PBAs focusing on the correlation between synthesis steps and derivative morphologies and composition. Insights into catalytic and electrochemical properties resulting from different derivatization strategies are also presented. We discuss challenges in manipulating the derivatives' properties, give perspectives of synthetic approaches for the target applications and present an outlook on less investigated grounds in Prussian blue derivatives.
  • Item
    Photoinduced Strain‐Assisted Synthesis of a Stiff‐Stilbene Polymer by Ring‐Opening Metathesis Polymerization
    (Hoboke, NJ : Wiley, 2020) Krishnan, Baiju P.; Xue, Lulu; Xiong, Xinhong; Cui, Jiaxi
    Developing a novel strategy to synthesize photoresponsive polymers is of significance owing to their potential applications. We report a photoinduced strain‐assisted synthesis of main‐chain stiff‐stilbene polymers by using ring‐opening metathesis polymerization (ROMP), activating a macrocyclic π‐bond connected to a stiff‐stilbene photoswitch through a linker. Since the linker acts as an external constraint, the photoisomerization to the E‐form leads to the stiff‐stilbene being strained and thus reactive to ROMP. The photoisomerization of Z‐form to E‐form was investigated using time‐dependent NMR studies and UV/Vis spectroscopy. The DFT calculation showed that the E‐form was less stable due to a lack of planarity. By the internal strain developed due to the linker constraint through photoisomerization, the E‐form underwent ROMP by a second generation Grubbs catalyst. In contrast, Z‐form did not undergo polymerization under similar conditions. The MALDI‐TOF spectrum of E‐form after polymerization showed the presence of oligomers of >5.2 kDa.
  • Item
    Cononsolvency of the responsive polymer poly(N-isopropylacrylamide) in water/methanol mixtures: a dynamic light scattering study of the effect of pressure on the collective dynamics
    (Berlin ; Heidelberg : Springer, 2022) Niebuur, Bart-Jan; Deyerling, André; Höfer, Nicole; Schulte, Alfons; Papadakis, Christine M.
    The collective dynamics of 25 wt% poly(N-isopropylacrylamide) (PNIPAM) solutions in water or an 80:20 v/v water/methanol mixture are investigated in the one-phase region in dependence on pressure and temperature using dynamic light scattering. Throughout, two dynamic modes are observed, the fast one corresponding to the relaxation of the chain segments within the polymer blobs and the slow one to the relaxation of the blobs. A pressure scan in the one-phase region on an aqueous solution at 34.0 °C, i.e., slightly below the maximum of the coexistence line, reveals that the dynamic correlation length of the fast mode increases when the left and the right branch of the coexistence line are approached. Thus, the chains are rather swollen far away from the coexistence line, but contracted near the phase transition. Temperature scans of solutions in neat H2O or in H2O/CD3OD at 0.1, 130, and 200 MPa reveal that the dynamic correlation length of the fast mode shows critical behavior. However, the critical exponents are significantly larger than the value predicted by mean-field theory for the static correlation length, ν = 0.5, and the exponent is significantly larger for the solution in the H2O/CD3OD mixture than in neat H2O.
  • Item
    Electroactive nanoinjection platform for intracellular delivery and gene silencing
    (London : Biomed Central, 2023) Shokouhi, Ali-Reza; Chen, Yaping; Yoh, Hao Zhe; Murayama, Takahide; Suu, Koukou; Morikawa, Yasuhiro; Brenker, Jason; Alan, Tuncay; Voelcker, Nicolas H.; Elnathan, Roey
    Background: Nanoinjection—the process of intracellular delivery using vertically configured nanostructures—is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell’s intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. Results: Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells’ viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. Conclusions: We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool
    (Basel : MDPI, 2020) Puertas-Bartolomé, Maria; Włodarczyk-Biegun, Małgorzata K; del Campo, Aránzazu; Vázquez-Lasa, Blanca; San Román, Julio
    Hydrogel-based bio-inks have recently attracted more attention for 3D printing applications in tissue engineering due to their remarkable intrinsic properties, such as a cell supporting environment. However, their usually weak mechanical properties lead to poor printability and low stability of the obtained structures. To obtain good shape fidelity, current approaches based on extrusion printing use high viscosity solutions, which can compromise cell viability. This paper presents a novel bio-printing methodology based on a dual-syringe system with a static mixing tool that allows in situ crosslinking of a two-component hydrogel-based ink in the presence of living cells. The reactive hydrogel system consists of carboxymethyl chitosan (CMCh) and partially oxidized hyaluronic acid (HAox) that undergo fast self-covalent crosslinking via Schiff base formation. This new approach allows us to use low viscosity solutions since in situ gelation provides the appropriate structural integrity to maintain the printed shape. The proposed bio-ink formulation was optimized to match crosslinking kinetics with the printing process and multi-layered 3D bio-printed scaffolds were successfully obtained. Printed scaffolds showed moderate swelling, good biocompatibility with embedded cells, and were mechanically stable after 14 days of the cell culture. We envision that this straightforward, powerful, and generalizable printing approach can be used for a wide range of materials, growth factors, or cell types, to be employed for soft tissue regeneration.
  • Item
    Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes
    (London [u.a.] : RSC, 2021) Metelkina, Olga; Huck, Benedikt; O'Connor, Jonathan S.; Koch, Marcus; Manz, Andreas; Lehr, Claus-Michael; Titz, Alexander
    The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.
  • Item
    Role of Extracellular Vimentin in Cancer-Cell Functionality and Its Influence on Cell Monolayer Permeability Changes Induced by SARS-CoV-2 Receptor Binding Domain
    (Basel : Molecular Diversity Preservation International, 2021) Thalla, Divyendu Goud; Jung, Philipp; Bischoff, Markus; Lautenschläger, Franziska
    The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood–brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.