Search Results

Now showing 1 - 6 of 6
  • Item
    Filled carbon nanotubes as anode materials for lithium-ion batteries
    (Basel : MDPI AG, 2020) Thauer, E.; Ottmann, A.; Schneider, P.; Möller, L.; Deeg, L.; Zeus, R.; Wilhelmi, F.; Schlestein, L.; Neef, C.; Ghunaim, R.; Gellesch, M.; Nowka, C.; Scholz, M.; Haft, M.; Wurmehl, S.; Wenelska, K.; Mijowska, E.; Kapoor, A.; Bajpai, A.; Hampel, S.; Klingeler, R.
    Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.
  • Item
    Effects of Promoter on Structural and Surface Properties of Zirconium Oxide-Based Catalyst Materials
    (Basel : MDPI AG, 2020) Borovinskaya, E.S.; Oswald, S.; Reschetilowski, W.
    Ternary mixed oxide systems CuO/ZnO/ZrO2 and CuO/NiO/ZrO2 were synthesized by one-pot synthesis for a better understanding of the synthesis-property relationships of zirconium oxide-based catalyst materials. The prepared mixed oxide samples were analysed by a broad range of characterisation methods (XRD, N2-physisorption, Temperature-Programmed Ammonia Desorption (TPAD), and XPS) to examine the structural and surface properties, as well as to identify the location of the potential catalytically active sites. By XPS analysis, it could be shown that a progressive enrichment of the surface composition with copper takes place by changing from ZnO to NiO as a promoter. Thus, by addition of the second component, not only electronic but also the geometric properties of active sites, i.e., copper species distribution within the catalyst surface, can be affected in a desired way.
  • Item
    Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144
    (Basel : MDPI AG, 2022) Singh, Shiv J.; Sturza, Mihai I.
    The discovery of iron-based superconductors (FBS) and their superconducting properties has generated huge research interest and provided a very rich physics high Tc family for fundamental and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca, Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these families is not an easy process, and a lot of efforts have been reported in this direction. However, the preparation of high-quality and suitable-sized samples is still challenging. In this short review, we will summarize the growth of materials with their superconducting properties, especially polycrystals and single crystals, for the 1111 and 1144 families, and make a short comparison between them to understand the developmental issues.
  • Item
    Syntheses, crystal structure and magnetic properties of Tl9RETe6 (RE = Ce, Sm, Gd)
    (Basel : MDPI AG, 2020) Isaeva, A.; Schönemann, R.; Doert, T.
    The three compounds Tl9RETe6 with RE = Ce, Sm, Gd were synthesized from the elements at 1020 K. Their isostructural crystal structures are ordered derivatives of the Tl5Te3 type with rare-earth metal and thallium occupying different Wyckoff positions. The structures can be understood as charge-ordered in accordance with the Zintl-Klemm concept: 9 Tl+ + RE3+ + 6 Te2-. DFT calculations for Tl9GdTe6, however, result in a low, but finite density of states at the Fermi level. Magnetic data confirm trivalent Gd, but indicate a small amount of Ce4+ in Tl9CeTe6; no indications for long-range magnetic order was found down to T = 2 K.
  • Item
    Systematic investigations of annealing and functionalization of carbon nanotube yarns
    (Basel : MDPI AG, 2020) Scholz, M.; Hayashi, Y.; Eckert, V.; Khavrus, V.; Leonhardt, A.; Büchner, B.; Mertig, M.; Hampel, S.
    Carbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing. A systematical study of this post synthetic treatment will assist in understanding what factors influences the conductivity of these materials. In this investigation, it is shown that the electrical conductivity can be increased by a factor of 2 and 5.5 through functionalization with acids and high temperature annealing respectively. The scale of the enhancement is dependent on the reducing of intertube space in case of functionalization. For annealing, not only is the highly graphitic structure of the carbon nanotubes (CNT) important, but it is also shown to influence the residual amorphous carbon in the structure. The promising results of this study can help to utilize CNY as a replacement for common materials in the field of electrical wiring.
  • Item
    Entropy of conduction electrons from transport experiments
    (Basel : MDPI AG, 2020) Pérez, N.; Wolf, C.; Kunzmann, A.; Freudenberger, J.; Krautz, M.; Weise, B.; Nielsch, K.; Schierning, G.
    The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two dierent kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments.