Search Results

Now showing 1 - 2 of 2
  • Item
    Formaldehyde-free curing of cotton cellulose fabrics in anhydrous media
    (New York, NY : Wiley, 2020) Mommer, Stefan; Kurniadi, Juliana; Keul, Helmut; Möller, Martin
    The effect of formaldehyde-free curing on standard cotton cellulose fabrics in anhydrous media is studied. Different crosslinkers are applied via (1) a pad-cure-dry process (solid/liquid) and (2) in a vapor chamber (solid/gas). The performance of each crosslinker and set of conditions is assessed by measuring dry crease recovery angles, DCRAs. We find that in control samples (treatment without crosslinker) the DCRAs are altered depending on the solvent. Using DMF, carbonyldiimidazole shows the best DCRA (160.1°, 15° higher than the non-treated fabrics). In ethyl acetate, triglycidyl isocyanurate shows the highest DCRA (22° higher than the control). The most promising crosslinkers are applied with selected catalysts known from literature. Here, trigycidyl isocyanurate in combination with the superbase P4-t-Bu gives the best DCRA (35° higher than the control). Using the vapor-chemical finishing, divinylsulfone as crosslinker increases the DCRA to 162.7° (18° higher than non-treated fabrics). Hence, cotton cellulose fabrics can be successfully finished in anhydrous conditions. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48371. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc.
  • Item
    Thermoresponsive zwitterionic poly(phosphobetaine) microgels: Effect of macro-RAFT chain length and cross-linker molecular weight on their antifouling properties
    (New York, NY : Wiley, 2021) Saha, Pabitra; Palanisamy, Anand Raj; Santi, Marta; Ganguly, Ritabrata; Mondal, Somashree; Singha, Nikhil K.; Pich, Andrij
    Adsorption of proteins on biological surfaces is a detrimental phenomenon that reduces the work-life of the implants in various biomedical applications. Here, we synthesized a new class of thermoresponsive zwitterionic poly(phosphobetaine) (PMPC) microgel with excellent surface antifouling property by macro-RAFT mediated thiol-epoxy click reaction. End-group modified zwitterionic PMPC homopolymers with well-defined molecular weight and narrow dispersity were grafted onto poly(N-vinylcaprolactam-co-glycidyl methacrylate) (PVG) copolymer backbone followed by addition of a cross-linker, leading to microgel formation. While no upper critical solution temperature (UCST) was found in poly(N-vinylcaprolactam-co-glycidyl methacrylate-g-2-methacryloyloxyethyl phosphorylcholine) (PVGP) graft copolymers, the corresponding microgels exhibited both UCST and lower critical solution temperature (LCST) transitions, related to the swelling and collapse of PMPC and poly (N-vinylcaprolactam) (PVCL) components respectively. An increase in the molecular chain length of the PMPC increased the shifting of UCST and LCST of the microgels to higher temperatures, due to the ability of zwitterionic groups to coordinate a large number of water molecules. The effect of the variation in the molecular weights of amphiphilic poly(ethylene glycol) diamine (PEG-NH2) cross-linker was also reflected in both temperature and salt responsiveness of the microgels. The efficacy of the microgels as potential antifouling materials was further studied by fluorescence microscopy and XPS analysis on microgel coatings treated with FITC-BSA solution and pure BSA solution respectively. Lower protein adsorption was observed for microgels grafted with higher molecular chain length of PMPC, whereas, the microgels synthesized using higher molecular weight PEG-NH2 diamine cross-linker displayed greater protein adsorption on their surfaces.