Search Results

Now showing 1 - 10 of 20
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    CAMP: An instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
    (Katlenburg-Lindau : Copernicus, 2022) Pilz, Christian; Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Siebert, Holger; Voigtländer, Jens; Lonardi, Michael
    Airborne observations of vertical aerosol particle distributions are crucial for detailed process studies and model improvements. Tethered balloon systems represent a less expensive alternative to aircraft to probe shallow atmospheric boundary layers (ABLs). This study presents the newly developed cubic aerosol measurement platform (CAMP) for balloon-borne observations of aerosol particle microphysical properties. With an edge length of 35 cm and a weight of 9 kg, the cube is an environmentally robust instrument platform intended for measurements at low temperatures, with a particular focus on applications in cloudy Arctic ABLs. The aerosol instrumentation on board CAMP comprises two condensation particle counters with different lower detection limits, one optical particle size spectrometer, and a miniaturized absorption photometer. Comprehensive calibrations and characterizations of the instruments were performed in laboratory experiments. The first field study with a tethered balloon system took place at the Leibniz Institute for Tropospheric Research (TROPOS) station in Melpitz, Germany, in the winter of 2019. At ambient temperatures between-8 and 15 C, the platform was operated up to a 1.5 km height on 14 flights under both clear-sky and cloudy conditions. The continuous aerosol observations at the ground station served as a reference for evaluating the CAMP measurements. Exemplary profiles are discussed to elucidate the performance of the system and possible process studies. Based on the laboratory instrument characterizations and the observations during the field campaign, CAMP demonstrated the capability to provide comprehensive aerosol particle measurements in cold and cloudy ABLs.
  • Item
    The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6
    (Katlenburg-Lindau : Copernicus, 2020) Goelzer, Heiko; Nowicki, Sophie; Payne, Anthony; Larour, Eric; Seroussi, Helene; Lipscomb, William H.; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew; Simon, Erika; Agosta, Cécile; Alexander, Patrick; Aschwanden, Andy; Barthel, Alice; Calov, Reinhard; Chambers, Christopher; Choi, Youngmin; Cuzzone, Joshua; Dumas, Christophe; Edwards, Tamsin; Felikson, Denis; Fettweis, Xavier; Golledge, Nicholas R.; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Le clec'h, Sebastien; Lee, Victoria; Leguy, Gunter; Little, Chris; Lowry, Daniel P.; Morlighem, Mathieu; Nias, Isabel; Quiquet, Aurelien; Rückamp, Martin; Schlegel, Nicole-Jeanne; Slater, Donald A.; Smith, Robin S.; Straneo, Fiammetta; Tarasov, Lev; van de Wal, Roderik; van den Broeke, Michiel
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6).We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90-50 and 32-17mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean. © Author(s) 2020.
  • Item
    A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Kaboth-Bahr, Stefanie; Bahr, André; Zeeden, Christian; Yamoah, Kweku A.; Lone, Mahjoor Ahmad; Chuang, Chih-Kai; Löwemark, Ludvig; Wei, Kuo-Yen
    Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.
  • Item
    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Alfonsi, Lucilla; Bergeot, Nicolas; Cilliers, Pierre J.; De Franceschi, Giorgiana; Baddeley, Lisa; Correia, Emilia; Di Mauro, Domenico; Enell, Carl-Fredrik; Engebretson, Mark; Ghoddousi-Fard, Reza; Häggström, Ingemar; Ham, Young-bae; Heygster, Georg; Jee, Geonhwa; Kero, Antti; Kosch, Michael; Kwon, Hyuck-Jin; Lee, Changsup; Lotz, Stefan; Macotela, Liliana; Marcucci, Maria Federica; Miloch, Wojciech J.; Morton, Y. Jade; Naoi, Takahiro; Negusini, Monia; Partamies, Noora; Petkov, Boyan H.; Pottiaux, Eric; Prikryl, Paul; Shreedevi, P.R.; Slapak, Rikard; Spogli, Luca; Stephenson, Judy; Triana-Gómez, Arantxa M.; Troshichev, Oleg A.; Van Malderen, Roeland; Weygand, James M.; Zou, Shasha
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring.
  • Item
    Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
    (Katlenburg-Lindau : European Geosciences Union, 2021) Hartmann, Markus; Gong, Xianda; Kecorius, Simonas; van Pinxteren, Manuela; Vogl, Teresa; Welti, André; Wex, Heike; Zeppenfeld, Sebastian; Herrmann, Hartmut; Wiedensohler, Alfred; Stratmann, Frank
    Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. -38gC and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above -10gC and below -32gC, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes. By heating of the filter samples to 95gC for 1ĝ€¯h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2ĝ€¯μm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2ĝ€¯μm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with -3.47gC, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above -10gC. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source. © Author(s) 2021.
  • Item
    Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106
    (Katlenburg-Lindau : Copernicus, 2020) Griesche, Hannes J.; Seifer, Patric; Ansmann, Albert; Baars, Holger; Velasco, Carola Barrientos; Bühl, Johannes; Engelmann, Ronny; Radenz, Martin; Zhenping, Yin; Macke, Andreas
    From 25 May to 21 July 2017, the research vessel Polarstern performed the cruise PS106 to the high Arctic in the region north and northeast of Svalbard. The mobile remote-sensing platform OCEANET was deployed aboard Polarstern. Within a single container, OCEANET houses state-of-the-art remote-sensing equipment, including a multiwavelength Raman polarization lidar PollyXT and a 14-channel microwave radiometer HATPRO (Humidity And Temperature PROfiler). For the cruise PS106, the measurements were supplemented by a motion-stabilized 35 GHz cloud radar Mira-35. This paper describes the treatment of technical challenges which were immanent during the deployment of OCEANET in the high Arctic. This includes the description of the motion stabilization of the cloud radar Mira-35 to ensure vertical-pointing observations aboard the moving Polarstern as well as the applied correction of the vessels heave rate to provide valid Doppler velocities. The correction ensured a leveling accuracy of ±0.5◦ during transits through the ice and an ice floe camp. The applied heave correction reduced the signal induced by the vertical movement of the cloud radar in the PSD of the Doppler velocity by a factor of 15. Low-level clouds, in addition, frequently prevented a continuous analysis of cloud conditions from synergies of lidar and radar within Cloudnet, because the technically determined lowest detection height of Mira-35 was 165 m above sea level. To overcome this obstacle, an approach for identification of the cloud presence solely based on data from the near-field receiver of PollyXT at heights from 50 m and 165 m above sea level is presented. We found low-level stratus clouds, which were below the lowest detection range of most automatic ground-based remote-sensing instruments during 25 % of the observation time. We present case studies of aerosol and cloud studies to introduce the capabilities of the data set. In addition, new approaches for ice crystal effective radius and eddy dissipation rates from cloud radar measurements and the retrieval of aerosol optical and microphysical properties from the observations of PollyXT are introduced. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Dansgaard-Oeschger-like events of the penultimate climate cycle: The loess point of view
    (Katlenburg-Lindau : Copernicus Ges., 2020) Rousseau, Denis-Didier; Antoine, Pierre; Boers, Niklas; Lagroix, France; Ghil, Michael; Lomax, Johanna; Fuchs, Markus; Debret, Maxime; Hatté, Christine; Moine, Olivier; Gauthier, Caroline; Jordanova, Diana; Jordanova, Neli
    The global character of the millennial-scale climate variability associated with the Dansgaard-Oeschger (DO) events in Greenland has been well-established for the last glacial cycle. Mainly due to the sparsity of reliable data, however, the spatial coherence of corresponding variability during the penultimate cycle is less clear. New investigations of European loess records from Marine Isotope Stage (MIS) 6 reveal the occurrence of alternating loess intervals and paleosols (incipient soil horizons), similar to those from the last climatic cycle. These paleosols are correlated, based on their stratigraphical position and numbers as well as available optically stimulated luminescence (OSL) dates, with interstadials described in various Northern Hemisphere records and in GLt_syn, the synthetic 800 kyr record of Greenland ice core
  • Item
    Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top
    (Katlenburg-Lindau : European Geosciences Union, 2021) Egerer, Ulrike; Ehrlich, André; Gottschalk, Matthias; Griesche, Hannes; Neggers, Roel A.J.; Siebert, Holger; Wendisch, Manfred
    Specific humidity inversions (SHIs) above low-level cloud layers have been frequently observed in the Arctic. The formation of these SHIs is usually associated with large-scale advection of humid air masses. However, the potential coupling of SHIs with cloud layers by turbulent processes is not fully understood. In this study, we analyze a 3 d period of a persistent layer of increased specific humidity above a stratocumulus cloud observed during an Arctic field campaign in June 2017. The tethered balloon system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) recorded vertical profile data of meteorological, turbulence, and radiation parameters in the atmospheric boundary layer. An in-depth discussion of the problems associated with humidity measurements in cloudy environments leads to the conclusion that the observed SHIs do not result from measurement artifacts. We analyze two different scenarios for the SHI in relation to the cloud top capped by a temperature inversion: (i) the SHI coincides with the cloud top, and (ii) the SHI is vertically separated from the lowered cloud top. In the first case, the SHI and the cloud layer are coupled by turbulence that extends over the cloud top and connects the two layers by turbulent mixing. Several profiles reveal downward virtual sensible and latent heat fluxes at the cloud top, indicating entrainment of humid air supplied by the SHI into the cloud layer. For the second case, a downward moisture transport at the base of the SHI and an upward moisture flux at the cloud top is observed. Therefore, the area between the cloud top and SHI is supplied with moisture from both sides. Finally, large-eddy simulations (LESs) complement the observations by modeling a case of the first scenario. The simulations reproduce the observed downward turbulent fluxes of heat and moisture at the cloud top. The LES realizations suggest that in the presence of a SHI, the cloud layer remains thicker and the temperature inversion height is elevated.
  • Item
    Using Bayesian Networks to Investigate the Influence of Subseasonal Arctic Variability on Midlatitude North Atlantic Circulation
    (Boston, Mass. [u.a.] : AMS, 2021) Harwood, Nathanael; Hall, Richard; Di Capua, Giorgia; Russell, Andrew; Tucker, Allan
    Recent enhanced warming and sea ice depletion in the Arctic have been put forward as potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes relative to other drivers remains unknown. Arctic–midlatitude connections in the North Atlantic region are particularly complex but important due to the frequent occurrence of severe winters in recent decades. Here, dynamic Bayesian networks with hidden variables are introduced to the field to assess their suitability for teleconnection analyses. Climate networks are constructed to analyze North Atlantic circulation variability at 5-day to monthly time scales during the winter months of the years 1981–2018. The inclusion of a number of Arctic, midlatitude, and tropical variables allows for an investigation into the relative role of Arctic influence compared to internal atmospheric variability and other remote drivers. A robust covariability between regions of amplified Arctic warming and two definitions of midlatitude circulation is found to occur entirely within winter at submonthly time scales. Hidden variables incorporated in networks represent two distinct modes of stratospheric polar vortex variability, capturing a periodic shift between average conditions and slower anomalous flow. The influence of the Barents–Kara Seas region on the North Atlantic Oscillation is found to be the strongest link at 5- and 10-day averages, while the stratospheric polar vortex strongly influences jet variability on monthly time scales.