Search Results

Now showing 1 - 3 of 3
  • Item
    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration
    (Weinheim : Wiley-VCH, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.
  • Item
    Dual-Use of Seawater Batteries for Energy Storage and Water Desalination
    (Weinheim : Wiley-VCH, 2022) Arnold, Stefanie; Wang, Lei; Presser, Volker
    Seawater batteries are unique energy storage systems for sustainable renewable energy storage by directly utilizing seawater as a source for converting electrical energy and chemical energy. This technology is a sustainable and cost-effective alternative to lithium-ion batteries, benefitting from seawater-abundant sodium as the charge-transfer ions. Research has significantly improved and revised the performance of this type of battery over the last few years. However, fundamental limitations of the technology remain to be overcome in future studies to make this method even more viable. Disadvantages include degradation of the anode materials or limited membrane stability in aqueous saltwater resulting in low electrochemical performance and low Coulombic efficiency. The use of seawater batteries exceeds the application for energy storage. The electrochemical immobilization of ions intrinsic to the operation of seawater batteries is also an effective mechanism for direct seawater desalination. The high charge/discharge efficiency and energy recovery make seawater batteries an attractive water remediation technology. Here, the seawater battery components and the parameters used to evaluate their energy storage and water desalination performances are reviewed. Approaches to overcoming stability issues and low voltage efficiency are also introduced. Finally, an overview of potential applications, particularly in desalination technology, is provided.
  • Item
    Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions
    (Hoboken, NJ : Wiley, 2020) Chen, Yaping; Wang, Ji; Li, Xiangling; Hu, Ning; Voelcker, Nicolas H.; Xie, Xi; Elnathan, Roey
    Engineered nano–bio cellular interfaces driven by 1D vertical nanostructures (1D‐VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell–VNS interfacial interactions are probed and assessed, highlighting the use of 1D‐VNS in immunomodulation, and intracellular delivery into immune cells—both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D‐VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell–VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard‐to‐transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS‐mediated intracellular delivery are discussed. By identifying up‐to‐date progress and fundamental challenges of current 1D‐VNS technology in immune‐cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D‐VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor‐T therapy.