Search Results

Now showing 1 - 10 of 63
  • Item
    Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus)
    (Lausanne : Frontiers Media, 2020) Fröhling, Antje; Bußler, Sara; Durek, Julia; Schlüter, Oliver K.
    The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product. © Copyright © 2020 Fröhling, Bußler, Durek and Schlüter.
  • Item
    Impact of process parameters and bulk properties on quality of dried hops
    (Basel : MDPI AG, 2020) Raut, Sharvari; Gersdorff, Gardis J.E. von; Münsterer, Jakob; Kammhuber, Klaus; Hensel, Oliver; Sturm, Barbara
    Hops are critical to the brewing industry. In commercial hop drying, a large bulk of hops is dried in multistage kilns for several hours. This affects the drying behavior and alters the amount and chemical composition of the hop oils. To understand these changes, hops of the var. Hallertauer Tradition were dried in bulks of 15, 25 and 35 kg/m2 at 60◦C and 0.35 m/s. Additionally, bulks of 25 kg/m2 were also dried at 65◦C and 0.45 m/s to assess the effect of change in temperature and velocity, respectively. The results obtained show that bulk weights significantly influence the drying behavior. Classification based on the cone size reveals 45.4% medium cones, 41.2% small cones and 8.6% large cones. The highest ∆E value of 6.3 and specific energy consumption (113,476 kJ/kgH2O) were observed for the 15 kg/m2 bulk. Increasing the temperature from 60◦C to 65◦C increased the oil yield losses by about 7% and myrcene losses by 22%. The results obtained show that it is important to define and consider optimum bulk and process parameters, to optimize the hop drying process to improve the process efficiency as well the product quality. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    An extended hybrid input-output model applied to fossil- and bio-based plastics
    (Amsterdam [u.a.] : Elsevier, 2021) Jander, Wiebke
    Matrix augmentation method is developed further and described transparently for enabling more specific input-output analyses of bio- vs. fossil-based sectors. A number of economic and environmental effects of substitution can be estimated, compared, and managed. While the model was applied for the first time to the German plastics industry, it can be well integrated into existing bioeconomy monitorings to represent substitution in sectors and countries. • Original matrix augmentation method is described in much detail for the first time considering available data for bio- and fossil-based industries. • Particular attention is paid to balancing cost and benefit in model building so that indicators can be integrated in a continuous monitoring of the bioeconomy. Hence, industry data is prefered to process data whenever possible. • Input structures of bio-based imports are considered in single-region input-output analysis.
  • Item
    Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Malus x domestica Borkh. 'Gala'
    (Lausanne : Frontiers Media, 2021) Penzel, Martin; Herppich, Werner B.; Weltzien, Cornelia; Tsoulias, Nikos; Zude-Sasse, Manuela
    The capacity of apple trees to produce fruit of a desired diameter, i.e., fruit-bearing capacity (FBC), was investigated by considering the inter-tree variability of leaf area (LA). The LA of 996 trees in a commercial apple orchard was measured by using a terrestrial two-dimensional (2D) light detection and ranging (LiDAR) laser scanner for two consecutive years. The FBC of the trees was simulated in a carbon balance model by utilizing the LiDAR-scanned total LA of the trees, seasonal records of fruit and leaf gas exchanges, fruit growth rates, and weather data. The FBC was compared to the actual fruit size measured in a sorting line on each individual tree. The variance of FBC was similar in both years, whereas each individual tree showed different FBC in both seasons as indicated in the spatially resolved data of FBC. Considering a target mean fruit diameter of 65 mm, FBC ranged from 84 to 168 fruit per tree in 2018 and from 55 to 179 fruit per tree in 2019 depending on the total LA of the trees. The simulated FBC to produce the mean harvest fruit diameter of 65 mm and the actual number of the harvested fruit >65 mm per tree were in good agreement. Fruit quality, indicated by fruit's size and soluble solids content (SSC), showed enhanced percentages of the desired fruit quality according to the seasonally total absorbed photosynthetic energy (TAPE) of the tree per fruit. To achieve a target fruit diameter and reduce the variance in SSC at harvest, the FBC should be considered in crop load management practices. However, achieving this purpose requires annual spatial monitoring of the individual FBC of trees.
  • Item
    Identification and molecular analysis of interaction sites in the MtSEO-F1 protein involved in forisome assembly
    (New York, NY [u.a.] : Elsevier, 2020) Rose, Judith; Visser, Franziska; Müller, Boje; Senft, Matthias; Groscurth, Sira; Sicking, Kevin F.; Twyman, Richard M.; Prüfer, Dirk; Noll, Gundula A.
    Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several “sieve element occlusion by forisome” (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains –an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)– but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly. To identify key amino acids involved in MtSEO-F1 dimerization and complex formation, we investigated protein-protein interactions by bimolecular fluorescence complementation and the analysis of yeast two-hybrid and random mutagenesis libraries. We identified a SEO-NTD core region as the major dimerization site, with abundant hydrophobic residues and rare charged residues suggesting dimerization is driven by the hydrophobic effect. We also found that ~45% of the full-length MtSEO-F1 sequence must be conserved for higher-order protein assembly, indicating that large interaction surfaces facilitate stable interactions, contributing to the high resilience of forisome bodies. Interestingly, the removal of 62 amino acids from the C-terminus did not disrupt forisome assembly. This is the first study unraveling interaction sites and mechanisms within the MtSEO-F1 protein at the level of dimerization and complex formation. © 2018
  • Item
    Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy
    (Barking : Elsevier, 2021) Zöhrer, Julia; Probst, Maraike; Dumfort, Sabrina; Lenz, Hannes; Pecenka, Ralf; Insam, Heribert; Ascher-Jenull, Judith
    One of the most challenging aspects of using wood chips as renewable energy source is the loss of biomass related to storage. Therefore, we installed three outdoor industrial-scale piles (250 m³) of poplar wood chips and monitored the bacterial and fungal communities by next-generation sequencing over a storage period of 120 d. Two of the three piles were supplemented with calcium dihydroxide (Ca(OH)2) (1.5%, 3% w/w) in order to test its potential as alkaline stabilization agent to preserve woody biomass during storage. Shifts in the microbial community composition occurred almost entirely in the beginning of the storage experiment, which we attribute to the temperature rise of up to 60 °C within the first week of storage. Later, however, we found little changes. Independent of Ca(OH)2 concentration, a consortium of lignocellulolytic and thermotolerant microorganisms dominated the stored wood chip microbiota emphasizing their role as key players during wood decomposition. Although the addition of Ca(OH)2 altered the physicochemical properties of wood chips, it did not prevent loss of biomass. Especially the pH was increased in Ca(OH)2 treated piles. However, only minor differences in the microbial communities’ composition were detected following Ca(OH)2 addition, highlighting the microbes tolerance towards and adaptation to changing environmental conditions.
  • Item
    Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.)
    (Basel : MDPI, 2021) Sagu, Sorel Tchewonpi; Landgräber, Eva; Henkel, Ina M; Huschek, Gerd; Homann, Thomas; Bußler, Sara; Schlüter, Oliver K.; Rawel, Harshadrai
    The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant.
  • Item
    Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals
    (New York, NY : Wiley, 2022) Dammer, Karl-Heinz; Schirrmann, Michael
    BACKGROUND: Health scouting of crops by satellite, airplanes, unmanned aerial (UAV) and ground vehicles can only evaluate the crop from above. The visible leaves may show no disease symptoms, but lower, older leaves not visible from above can do. A mobile in-canopy sensor was developed, carried by a tractor to detect diseases in cereal crops. Photodiodes measure the reflected light in the red and infrared wavelength range at 10 different vertical heights in lateral directions. RESULTS: Significant differences occurred in the vegetation index NDVI of sensor levels operated inside and near the winter wheat canopy between infected (stripe rust: 2018, 2019 / leaf rust: 2020) and control plots. The differences were not significant at those sensor levels operated far above the canopy. CONCLUSIONS: Lateral reflectance measurements inside the crop canopy are able to distinguish between disease-infected and healthy crops. In future mobile in-canopy scouting could be an extension to the common above-canopy scouting praxis for making spraying decisions by the farmer or decision support systems. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  • Item
    Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity
    (2020) López-Gómez, José Pablo; Alexandri, Maria; Schneider, Roland; Latorre-Sánchez, Marcos; Coll Lozano, Caterina; Venus, Joachim
    The organic fraction of municipal solid waste (OFMSW) is an abundant biowaste with great potential in the bioeconomy model. Previous reports have demonstrated that OFMSW hydrolysates are good substrates for lactic acid (LA) production. However, LA can exist in two enantiomeric forms (L- and D-) and most commercial LA applications require a high enantiomeric purity, typically of the L-isomer. Due to natural occurring bacteria in the waste, a mixture of D- and L-LA can form in the substrate, reducing the final enantiomeric purity of the product and limiting its commercial application. In the research reported in this article, hydrolysates from OFMSW were evaluated for the production L-LA with high enantiomeric purity. Firstly, a pre-treatment with monopolar electrodialysis membranes was implemented to remove the unfavourable D-LA in the hydrolysate. This step allowed the reduction in LA concentration and subsequent fermentations of the hydrolysate resulted in enantiomeric purities over 98%. At the pilot scale, a fermentation of the pre-treated hydrolysate, by B. coagulans A166, resulted in a final LA concentration of 61.1 g L−1 and a yield of 0.94 g g−1. The downstream of the process resulted on a LA recovery of 51.5% and a L-LA optical purity of 98.7%.
  • Item
    Establishment of a Laboratory Scale Set-Up with Controlled Temperature and High Humidity to Investigate Dry Matter Losses of Wood Chips from Poplar during Storage
    (Basel : MDPI, 2022) Hernandez-Estrada, Albert; Pecenka, Ralf; Dumfort, Sabrina; Ascher-Jenull, Judith; Lenz, Hannes; Idler, Christine; Hoffmann, Thomas
    The aim of this work was to improve the understanding of dry matter losses (DML) that occur in wood chips during the initial phase of storage in outdoor piles. For this purpose, a laboratory scale storage chamber was developed and investigated regarding its ability to recreate the conditions that chips undergo during the initial phase of outdoor storage. Three trials with poplar Max-4 (Populus maximowiczii Henry  Populus nigra L.) chips were performed for 6–10 weeks in the storage chamber under controlled temperature and assisted humidity. Two different setups were investigated to maintain a high relative humidity (RH) inside the storage chamber; one using water containers, and one assisted with a humidifier. Moisture content (MC) and DML of the chips were measured at different storage times to evaluate their storage behaviour in the chamber. Additionally, microbiological analyses of the culturable fraction of saproxylic microbiota were performed, with a focus on mesophilic fungi, but discriminating also xerophilic fungi, and mesophilic bacteria, with focus on actinobacteria, in two trials, to gain a view on the poplar wood chip-inhabiting microorganisms as a function of storage conditions (moisture, temperature) and time. Results show that DML up to 8.8–13.7% occurred in the chips within 6–10 storage weeks. The maximum DML were reached in the trial using the humidifier, which seemed a suitable technique to keep a high RH in the testing chamber, and thus, to analyse the wood chips in conditions comparable to those in outdoor piles during the initial storage phase.