Search Results

Now showing 1 - 9 of 9
  • Item
    Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Emmert, Steffen; Pantermehl, Sven; Foth, Aenne; Waletzko-Hellwig, Janine; Hellwig, Georg; Bader, Rainer; Illner, Sabine; Grabow, Niels; Bekeschus, Sander; Weltmann, Klaus-Dieter; Jung, Ole; Boeckmann, Lars
    Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds.
  • Item
    Medical gas plasma-stimulated wound healing: Evidence and mechanisms
    (Amsterdam [u.a.] : Elsevier, 2021) Bekeschus, Sander; von Woedtke, Thomas; Emmert, Steffen; Schmidt, Anke
    Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
  • Item
    Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo
    (Basel : MDPI, 2020) Alimohammadi, Mina; Golpour, Monireh; Sohbatzadeh, Farshad; Hadavi, Seyedehniaz; Bekeschus, Sander; Niaki, Haleh Akhavan; Valadan, Reza; Rafiei, Alireza
    Malignant melanoma is a devastating disease. Because of its aggressiveness, it also serves as a model tumor for investigating novel therapeutic avenues. In recent years, scientific evidence has shown that cold atmospheric plasma (CAP) might be a promising modality in cancer therapy. In this study, we aimed to evaluate the effect of CAP generated by an argon plasma jet alone or in combination with dacarbazine (DAC) on melanoma cells in vitro and in vivo. The effects of the CAP on inducing lipid peroxidation and nitric oxide production were higher in B16 melanoma cells in comparison to non-malignant L929 cells. Assays on cell growth, apoptosis, and expression of genes related to, e.g., autophagic processes, showed CAP to have a substantial impact in melanoma cells while there were only minoreffects in L929 cells. In vivo, both CAP monotherapy and combination with DAC significantly decreased tumor growth. These results suggest that CAP not only selectively induces cell death in melanoma but also holds promises in combination with chemotherapy that might lead to improved tumor control. © 2020 by the authors.
  • Item
    Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells In Vitro
    (Basel : Molecular Diversity Preservation International, 2020) Pasqual-Melo, Gabriella; Sagwal, Sanjeev Kumar; Freund, Eric; Gandhirajan, Rajesh Kumar; Frey, Benjamin; von Woedtke, Thomas; Gaipl, Udo; Bekeschus, Sander
    Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFa, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Combined toxicity of gas plasma treatment and nanoparticles exposure in melanoma cells in vitro
    (Basel : MDPI, 2021) Bekeschus, Sander
    Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increas-ingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
  • Item
    The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function
    (New York, NY [u.a.] : Elsevier, 2020) Schmidt, Anke; Liebelt, Grit; Striesow, Johanna; Freund, Eric; Woedtke, Thomas von; Wende, Kristian; Bekeschus, Sander
    Cold plasma technology is an emerging tool facilitating the spatially controlled delivery of a multitude of reactive species (ROS) to the skin. While the therapeutic efficacy of plasma treatment has been observed in several types of diseases, the fundamental consequences of plasma-derived ROS on skin physiology remain unknown. We aimed to bridge this gap since the epidermal skin barrier and perfusion plays a vital role in health and disease by maintaining homeostasis and protecting from environmental damage. The intact skin of SKH1 mice was plasma-treated in vivo. Gene and protein expression was analyzed utilizing transcriptomics, qPCR, and Western blot. Immunofluorescence aided the analysis of percutaneous skin penetration of curcumin. Tissue oxygenation, perfusion, hemoglobin, and water index was investigated using hyperspectral imaging. Reversed-phase liquid-chromatography/mass spectrometry was performed for the identification of changes in the lipid composition and oxidation. Transcriptomic analysis of plasma-treated skin revealed modulation of genes involved in regulating the junctional network (tight, adherence, and gap junctions), which was confirmed using qPCR, Western blot, and immunofluorescence imaging. Plasma treatment increased the disaggregation of cells in the stratum corneum (SC) concomitant with increased tissue oxygenation, gap junctional intercellular communication, and penetration of the model drug curcumin into the SC preceded by altered oxidation of skin lipids and their composition in vivo. In summary, plasma-derived ROS modify the junctional network, which promoted tissue oxygenation, oxidation of SC-lipids, and restricted penetration of the model drug curcumin, implicating that plasma may provide a novel and sensitive tool of skin barrier regulation. © 2020 The Author(s)
  • Item
    Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation
    (Amsterdam [u.a.] : Elsevier, 2021) Schmidt, Anke; Liebelt, Grit; Nießner, Felix; von Woedtke, Thomas; Bekeschus, Sander
    In response to injury, efficient migration of skin cells to rapidly close the wound and restore barrier function requires a range of coordinated processes in cell spreading and migration. Gas plasma technology produces therapeutic reactive species that promote skin regeneration by driving proliferation and angiogenesis. However, the underlying molecular mechanisms regulating gas plasma-aided cell adhesion and matrix remodeling essential for wound closure remain elusive. Here, we combined in vitro analyses in primary dermal fibroblasts isolated from murine skin with in vivo studies in a murine wound model to demonstrate that gas plasma treatment changed phosphorylation of signaling molecules such as focal adhesion kinase and paxillin α in adhesion-associated complexes. In addition to cell spreading and migration, gas plasma exposure affected cell surface adhesion receptors (e.g., integrinα5β1, syndecan 4), structural proteins (e.g., vinculin, talin, actin), and transcription of genes associated with differentiation markers of fibroblasts-to-myofibroblasts and epithelial-to-mesenchymal transition, cellular protrusions, fibronectin fibrillogenesis, matrix metabolism, and matrix metalloproteinase activity. Finally, we documented that gas plasma exposure increased tissue oxygenation and skin perfusion during ROS-driven wound healing. Altogether, these results provide critical insights into the molecular machinery of gas plasma-assisted wound healing mechanisms.
  • Item
    xCT (SLC7A11) expression confers intrinsic resistance to physical plasma treatment in tumor cells
    (Amsterdam [u.a.] : Elsevier, 2020) Bekeschus, Sander; Eisenmann, Sebastian; Sagwal, Sanjeev Kumar; Bodnar, Yana; Moritz, Juliane; Poschkamp, Broder; Stoffels, Ingo; Emmert, Steffen; Madesh, Muniswamy; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Gandhirajan, Rajesh Kumar
    Cold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines. We observed stable intracellular glutathione levels following plasma treatment only in the 'resistant' cell lines indicative of altered antioxidant mechanisms. Assessment of proteins involved in GSH metabolism revealed cystine-glutamate antiporter xCT (SLC7A11) to be significantly more abundant in the 'resistant' cell lines as compared to 'sensitive' cell lines. This decisive role of xCT was confirmed by pharmacological and genetic inhibition, followed by cold physical plasma treatment. Finally, microscopy analysis of ex vivo plasma-treated human melanoma punch biopsies suggested a correlation between apoptosis and basal xCT protein abundance. Taken together, our results demonstrate that xCT holds the potential as a biomarker predicting the sensitivity of tumor cells towards plasma treatment.
  • Item
    Biocompatible Gas Plasma Treatment Affects Secretion Profiles but Not Osteogenic Differentiation in Patient-Derived Mesenchymal Stromal Cells
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Fischer, Maximilian; Schoon, Janosch; Freund, Eric; Miebach, Lea; Weltmann, Klaus-Dieter; Bekeschus, Sander; Wassilew, Georgi I.
    Cold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen and nitrogen species, is suggested to provide advantages in regenerative medicine. Intraoperative CPP therapy targeting pathologies related to diminished bone quality could be promising in orthopedic surgery. Assessment of a clinically approved plasma jet regarding cellular effects on primary bone marrow mesenchymal stromal cells (hBM-MSCs) from relevant arthroplasty patient cohorts is needed to establish CPP-based therapeutic approaches for bone regeneration. Thus, the aim of this study was to derive biocompatible doses of CPP and subsequent evaluation of human primary hBM-MSCs’ osteogenic and immunomodulatory potential. Metabolic activity and cell proliferation were affected in a treatment-time-dependent manner. Morphometric high content imaging analyses revealed a decline in mitochondria and nuclei content and increased cytoskeletal compactness following CPP exposure. Employing a nontoxic exposure regime, investigation on osteogenic differentiation did not enhance osteogenic capacity of hBM-MSCs. Multiplex analysis of major hBM-MSC cytokines, chemokines and growth factors revealed an anti-inflammatory, promatrix-assembling and osteoclast-regulating secretion profile following CPP treatment and osteogenic stimulus. This study can be noted as the first in vitro study addressing the influence of CPP on hBM-MSCs from individual donors of an arthroplasty clientele.