Search Results

Now showing 1 - 10 of 64
  • Item
    Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus)
    (Lausanne : Frontiers Media, 2020) Fröhling, Antje; Bußler, Sara; Durek, Julia; Schlüter, Oliver K.
    The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product. © Copyright © 2020 Fröhling, Bußler, Durek and Schlüter.
  • Item
    Calculation of ventilation rates and ammonia emissions : Comparison of sampling strategies for a naturally ventilated dairy barn
    (San Diego, Calif. : Academ. Press, 2020) Janke, David; Willink, Dylia; Ammon, Christian; Hempel, Sabrina; Schrade, Sabine; Demeyer, Peter; Hartung, Eberhard; Amon, Barbara; Ogink, Nico; Amon, Thomas
    Emissions and ventilation rates (VRs) in naturally ventilated dairy barns (NVDBs) are usually measured using indirect methods, where the choice of inside and outside sampling locations (i.e. sampling strategy) is crucial. The goal of this study was to quantify the influence of the sampling strategy on the estimation of emissions and VRs. We equipped a NVDB in northern Germany with an extensive measuring setup capable of measuring emissions under all wind conditions. Ammonia (NH3) and carbon dioxide (CO2) concentrations were measured with two Fourier-transform infrared spectrometers. Hourly values for ventilation rates and emissions for ammonia over a period of nearly a year were derived using the CO2 balance method and five different sampling strategies for the acquisition of indoor and outdoor concentrations were applied. When comparing the strategy estimating the highest emission level to the strategy estimating the lowest, the differences in NH3 emissions in winter, transition, and summer season were +26%, +19% and +11%, respectively. For the ventilation rates, the differences were +80%, +94%, and 63% for the winter, transition and summer season, respectively. By accommodating inside/outside concentration measurements around the entire perimeter of the barn instead of a reduced part of the perimeter (aligned to a presumed main wind direction), the amount of available data substantially increased for around 210% for the same monitoring period.
  • Item
    Impact of process parameters and bulk properties on quality of dried hops
    (Basel : MDPI AG, 2020) Raut, Sharvari; Gersdorff, Gardis J.E. von; Münsterer, Jakob; Kammhuber, Klaus; Hensel, Oliver; Sturm, Barbara
    Hops are critical to the brewing industry. In commercial hop drying, a large bulk of hops is dried in multistage kilns for several hours. This affects the drying behavior and alters the amount and chemical composition of the hop oils. To understand these changes, hops of the var. Hallertauer Tradition were dried in bulks of 15, 25 and 35 kg/m2 at 60◦C and 0.35 m/s. Additionally, bulks of 25 kg/m2 were also dried at 65◦C and 0.45 m/s to assess the effect of change in temperature and velocity, respectively. The results obtained show that bulk weights significantly influence the drying behavior. Classification based on the cone size reveals 45.4% medium cones, 41.2% small cones and 8.6% large cones. The highest ∆E value of 6.3 and specific energy consumption (113,476 kJ/kgH2O) were observed for the 15 kg/m2 bulk. Increasing the temperature from 60◦C to 65◦C increased the oil yield losses by about 7% and myrcene losses by 22%. The results obtained show that it is important to define and consider optimum bulk and process parameters, to optimize the hop drying process to improve the process efficiency as well the product quality. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    An extended hybrid input-output model applied to fossil- and bio-based plastics
    (Amsterdam [u.a.] : Elsevier, 2021) Jander, Wiebke
    Matrix augmentation method is developed further and described transparently for enabling more specific input-output analyses of bio- vs. fossil-based sectors. A number of economic and environmental effects of substitution can be estimated, compared, and managed. While the model was applied for the first time to the German plastics industry, it can be well integrated into existing bioeconomy monitorings to represent substitution in sectors and countries. • Original matrix augmentation method is described in much detail for the first time considering available data for bio- and fossil-based industries. • Particular attention is paid to balancing cost and benefit in model building so that indicators can be integrated in a continuous monitoring of the bioeconomy. Hence, industry data is prefered to process data whenever possible. • Input structures of bio-based imports are considered in single-region input-output analysis.
  • Item
    Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Malus x domestica Borkh. 'Gala'
    (Lausanne : Frontiers Media, 2021) Penzel, Martin; Herppich, Werner B.; Weltzien, Cornelia; Tsoulias, Nikos; Zude-Sasse, Manuela
    The capacity of apple trees to produce fruit of a desired diameter, i.e., fruit-bearing capacity (FBC), was investigated by considering the inter-tree variability of leaf area (LA). The LA of 996 trees in a commercial apple orchard was measured by using a terrestrial two-dimensional (2D) light detection and ranging (LiDAR) laser scanner for two consecutive years. The FBC of the trees was simulated in a carbon balance model by utilizing the LiDAR-scanned total LA of the trees, seasonal records of fruit and leaf gas exchanges, fruit growth rates, and weather data. The FBC was compared to the actual fruit size measured in a sorting line on each individual tree. The variance of FBC was similar in both years, whereas each individual tree showed different FBC in both seasons as indicated in the spatially resolved data of FBC. Considering a target mean fruit diameter of 65 mm, FBC ranged from 84 to 168 fruit per tree in 2018 and from 55 to 179 fruit per tree in 2019 depending on the total LA of the trees. The simulated FBC to produce the mean harvest fruit diameter of 65 mm and the actual number of the harvested fruit >65 mm per tree were in good agreement. Fruit quality, indicated by fruit's size and soluble solids content (SSC), showed enhanced percentages of the desired fruit quality according to the seasonally total absorbed photosynthetic energy (TAPE) of the tree per fruit. To achieve a target fruit diameter and reduce the variance in SSC at harvest, the FBC should be considered in crop load management practices. However, achieving this purpose requires annual spatial monitoring of the individual FBC of trees.
  • Item
    Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust
    (Basel : MDPI AG, 2020) Pecenka, Ralf; Lenz, Hannes; Jekayinfa, Simeon Olatayo; Hoffmann, Thomas
    The cultivation of fast-growing wood (e.g., poplar, willow or black locust) in short rotation coppices and agroforestry systems presents an opportunity for producing biomass sustainably in the agricultural sector. Cost-efficient agricultural wood production requires the availability of high-performance machinery and methods with which high-quality wood chips can be produced at low cost. It is known from harvesting short rotation coppices in practice that both the wood chip quality and the performance of the harvesting machinery depend on a variety of factors (e.g., harvesting method, weather conditions, tree species). That is why this study examines in detail the influence of the tree species (different varieties of poplar, willow, black locust) and the wood condition (fresh, stored or dried, frozen) on the specific energy demand for comminution in a stationary drum chipper and on the particle size distribution of the wood chips produced. For all the tree species examined, the chipping of dried as well as frozen stems was connected with a significant increase in the specific energy demand for comminution. An increase of 31% has been measured if poplar stems are chipped in frozen conditions (max. 6.31 kWh t−1). Drying led to an increase of 59% for dried willow stems (max. 6.67 kWh t−1). Drying and frost had also an influence on the size and quality of the wood chips, but no globally significant connection could be established for the examined tree varieties.
  • Item
    Impact of process temperature and organic loading rate on cellulolytic/hydrolytic biofilm microbiomes during biomethanation of ryegrass silage revealed by genome-centered metagenomics and metatranscriptomics
    (London : BioMed Central, 2020) Maus, Irena; Klocke, Michael; Derenkó, Jaqueline; Stolze, Yvonne; Beckstette, Michael; Jost, Carsten; Wibberg, Daniel; Blom, Jochen; Henke, Christian; Willenbücher, Katharina; Rumming, Madis; Rademacher, Antje; Pühler, Alfred; Sczyrba, Alexander; Schlüter, Andreas
    Background: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage two-phase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted. Results: In total, 78 bacterial and archaeal MAGs representing the most abundant members of the communities, and featuring defined quality criteria were selected and characterized in detail. Determination of MAG abundances under the tested conditions by mapping of the obtained metagenome sequence reads to the MAGs revealed that MAG abundance profiles were mainly shaped by the temperature but also by the OLR. However, the OLR effect was more pronounced for the mesophilic systems as compared to the thermophilic ones. In contrast, metatranscriptome mapping to MAGs subsequently normalized to MAG abundances showed that under thermophilic conditions, MAGs respond to increased OLRs by shifting their transcriptional activities mainly without adjusting their proliferation rates. This is a clear difference compared to the behavior of the microbiome under mesophilic conditions. Here, the response to increased OLRs involved adjusting of proliferation rates and corresponding transcriptional activities. The analysis led to the identification of MAGs positively responding to increased OLRs. The most outstanding MAGs in this regard, obviously well adapted to higher OLRs and/or associated conditions, were assigned to the order Clostridiales (Acetivibrio sp.) for the mesophilic biofilm and the orders Bacteroidales (Prevotella sp. and an unknown species), Lachnospirales (Herbinix sp. and Kineothrix sp.) and Clostridiales (Clostridium sp.) for the thermophilic biofilm. Genome-based metabolic reconstruction and transcriptional profiling revealed that positively responding MAGs mainly are involved in hydrolysis of grass silage, acidogenesis and/or acetogenesis. Conclusions: An integrated-omics approach enabled the identification of new AD biofilm keystone species featuring outstanding performance under stress conditions such as increased OLRs. Genome-based knowledge on the metabolic potential and transcriptional activity of responsive microbiome members will contribute to the development of improved microbiological AD management strategies for biomethanation of renewable biomass. © 2020 The Author(s).
  • Item
    Limited life cycle andcost assessment for the bioconversion of lignin‐derived aromatics into adipic acid
    (New York, NY [u.a.] : Wiley, 2020) van Duuren, Jozef B.J.H.; de Wild, Paul J.; Starck, Sören; Bradtmöller, Christian; Selzer, Mirjam; Mehlmann, Kerstin; Schneider, Roland; Kohlstedt, Michael; Poblete‐Castr, Ignacio; Stolzenberger, Jessica; Barton, Nadja; Fritz, Michel; Scholl, Stephan; Venus, Joachim; Wittmann, Christoph
    Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. © 2020 Wiley Periodicals, Inc.
  • Item
    Identification and molecular analysis of interaction sites in the MtSEO-F1 protein involved in forisome assembly
    (New York, NY [u.a.] : Elsevier, 2020) Rose, Judith; Visser, Franziska; Müller, Boje; Senft, Matthias; Groscurth, Sira; Sicking, Kevin F.; Twyman, Richard M.; Prüfer, Dirk; Noll, Gundula A.
    Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several “sieve element occlusion by forisome” (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains –an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)– but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly. To identify key amino acids involved in MtSEO-F1 dimerization and complex formation, we investigated protein-protein interactions by bimolecular fluorescence complementation and the analysis of yeast two-hybrid and random mutagenesis libraries. We identified a SEO-NTD core region as the major dimerization site, with abundant hydrophobic residues and rare charged residues suggesting dimerization is driven by the hydrophobic effect. We also found that ~45% of the full-length MtSEO-F1 sequence must be conserved for higher-order protein assembly, indicating that large interaction surfaces facilitate stable interactions, contributing to the high resilience of forisome bodies. Interestingly, the removal of 62 amino acids from the C-terminus did not disrupt forisome assembly. This is the first study unraveling interaction sites and mechanisms within the MtSEO-F1 protein at the level of dimerization and complex formation. © 2018
  • Item
    Molecular monitoring of the poplar wood chip microbiome as a function of storage strategy
    (Barking : Elsevier, 2021) Zöhrer, Julia; Probst, Maraike; Dumfort, Sabrina; Lenz, Hannes; Pecenka, Ralf; Insam, Heribert; Ascher-Jenull, Judith
    One of the most challenging aspects of using wood chips as renewable energy source is the loss of biomass related to storage. Therefore, we installed three outdoor industrial-scale piles (250 m³) of poplar wood chips and monitored the bacterial and fungal communities by next-generation sequencing over a storage period of 120 d. Two of the three piles were supplemented with calcium dihydroxide (Ca(OH)2) (1.5%, 3% w/w) in order to test its potential as alkaline stabilization agent to preserve woody biomass during storage. Shifts in the microbial community composition occurred almost entirely in the beginning of the storage experiment, which we attribute to the temperature rise of up to 60 °C within the first week of storage. Later, however, we found little changes. Independent of Ca(OH)2 concentration, a consortium of lignocellulolytic and thermotolerant microorganisms dominated the stored wood chip microbiota emphasizing their role as key players during wood decomposition. Although the addition of Ca(OH)2 altered the physicochemical properties of wood chips, it did not prevent loss of biomass. Especially the pH was increased in Ca(OH)2 treated piles. However, only minor differences in the microbial communities’ composition were detected following Ca(OH)2 addition, highlighting the microbes tolerance towards and adaptation to changing environmental conditions.