Search Results

Now showing 1 - 5 of 5
  • Item
    Trypsin-Free Cultivation of 3D Mini-Tissues in an Adaptive Membrane Bioreactor
    (Weinheim : Wiley-VCH, 2020) Djeljadini, Suzana; Lohaus, Theresa; Gausmann, Marcel; Rauer, Sebastian; Kather, Michael; Krause, Bernd; Pich, Andrij; Möller, Martin; Wessling, Matthias
    The production of large scaffold-free tissues is a key challenge in regenerative medicine. Nowadays, temperature-responsive polymers allow intact tissue harvesting without needing proteolytic enzymes. This method is limited to tissue culture plastic with limited upscaling capacity and plain process control. Here, a thermoresponsive hollow fiber membrane bioreactor is presented to produce large scaffold-free tissues. Intact tissues, rich in cell-to-cell connections and ECM, are harvested from a poly(N-vinylcaprolactam) microgel functionalized poly(ether sulfone)/poly(vinylpyrrolidone) hollow fiber membrane by a temperature shift. The harvested 3D tissues adhere in successive cultivation and exhibit high vitality for several days. The facile adsorptive coating waives the need for extensive surface treatment. The research is anticipated to be a starting point for upscaling the production of interconnected tissues enabling new opportunities in regenerative medicine, large-scale drug screening on physiological relevant tissues, and potentially opening new chances in cell-based therapies. © 2020 The Authors. Advanced Biosystems published by Wiley-VCH GmbH
  • Item
    All-Conjugated Polymer Core-Shell and Core-Shell-Shell Particles with Tunable Emission Profiles and White Light Emission
    (Weinheim : Wiley-VCH, 2021) Haehnle, Bastian; Schuster, Philipp A.; Chen, Lisa; Kuehne, Alexander J. C.
    Future applications of conjugated polymer particles (CPP) in medicine, organic photonics, and optoelectronics greatly depend on high performance and precisely adjustable optical properties of the particles. To meet these criteria, current particle systems often combine conjugated polymers with inorganic particles in core-shell geometries, extending the possible optical characteristics of CPP. However, current conjugated polymer particles are restricted to a single polymer phase composed of a distinct polymer or a polymer blend. Here, a synthetic toolbox is presented that enables the synthesis of monodisperse core-shell and core-shell-shell particles, which consist entirely of conjugated polymers but of different types in the core and the shells. Seeded and fed-batch dispersion polymerizations based on Suzuki-Miyaura-type cross-coupling are investigated. The different approaches allow accurate control over the created interface between the conjugated polymer phases and thus also over the energy transfer phenomena between them. This approach opens up completely new synthetic freedom for fine tuning of the optical properties of CPP, enabling, for example, the synthesis of individual white light-emitting particles.
  • Item
    Reconstruction of Ultra-thin Alveolar-capillary Basement Membrane Mimics
    (Weinheim : Wiley-VCH, 2021) Jain, Puja; Nishiguchi, Akihiro; Linz, Georg; Wessling, Matthias; Ludwig, Andreas; Rossaint, Rolf; Möller, Martin; Singh, Smriti
    Alveolar-capillary basement membrane (BM) is ultra-thin (<2 µm) extracellular matrix that maintains integral epithelial-endothelial cell layers. In vitro reconstructions of alveolar-capillary barrier supported on synthetic scaffolds closely resembling the fibrous and ultra-thin natural BM are essential in mimicking the lung pathophysiology. Although BM topology and dimensions are well known to significantly influence cellular behavior, conventionally used BM mimics fail to recreate this natural niche. To overcome this, electrospun ultra-thin 2 µm poly(caprolactone) (PCL) nanofibrous mesh is used to establish an alveolar-capillary barrier model of lung endothelial/epithelial cells. Transepithelial electrical resistance (TEER) and permeability studies reveal integral tight junctions and improved mass transport through the highly porous PCL meshes compared to conventional dense membranes with etched pores. The chemotaxis of neutrophils is shown across the barrier in presence of inflammatory response that is naturally impeded in confined regions. Conventional requirement of 3 µm or larger pore size can lead to barrier disruption due to epithelial/endothelial cell invasion. Despite high porosity, the interconnected BM mimic prevents barrier disruption and allows neutrophil transmigration, thereby demonstrating the physiological relevance of the thin nanofibrous meshes. It is envisioned that these bipolar cultured barriers would contribute to an organ-level in vitro model for pathological disease, environmental pollutants, and nanotoxicology. © 2021 The Authors. Advanced Biology published by Wiley-VCH GmbH
  • Item
    Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings
    (Weinheim : Wiley-VCH, 2021) Söder, Dominik; Garay-Sarmiento, Manuela; Rahimi, Khosrow; Obstals, Fabian; Dedisch, Sarah; Haraszti, Tamás; Davari, Mehdi D.; Jakob, Felix; Heß, Christoph; Schwaneberg, Ulrich; Rodriguez-Emmenegger, Cesar
    The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
  • Item
    Bioactive Nanogels Mimicking the Antithrombogenic Nitric Oxide-Release Function of the Endothelium
    (Weinheim : Wiley-VCH, 2023) Hosseinnejad, Aisa; Ludwig, Nadine; Mersmann, Sina; Winnerbach, Patrick; Bleilevens, Christian; Rossaint, Rolf; Rossaint, Jan; Singh, Smriti
    Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5′-diphosphate, and U46619 (thromboxane A2 mimetic).