Search Results

Now showing 1 - 2 of 2
  • Item
    International transfers of personal data for health research following Schrems II: a problem in need of a solution
    (Basingstoke : Stockton Press, 2021) Hallinan, Dara; Bernier, Alexander; Cambon-Thomsen, Anne; Crawley, Francis P.; Dimitrova, Diana; Bauzer Medeiros, Claudia; Nilsonne, Gustav; Parker, Simon; Pickering, Brian; Rennes, Stéphanie
    On 16 July 2020, the Court of Justice of the European Union issued their decision in the Schrems II case concerning Facebook's transfers of personal data from the EU to the US. The decision may have significant effects on the legitimate transfer of personal data for health research purposes from the EU. This article aims: (i) to outline the consequences of the Schrems II decision for the sharing of personal data for health research between the EU and third countries, particularly in the context of the COVID-19 pandemic; and, (ii) to consider certain options available to address the consequences of the decision and to facilitate international data exchange for health research moving forward.
  • Item
    How Structured Metadata Acquisition Contributes to the Reproducibility of Nanosafety Studies: Evaluation by a Round-Robin Test
    (Basel : MDPI, 2022) Elberskirch, Linda; Sofranko, Adriana; Liebing, Julia; Riefler, Norbert; Binder, Kunigunde; Bonatto Minella, Christian; Razum, Matthias; Mädler, Lutz; Unfried, Klaus; Schins, Roel P.F.; Kraegeloh, Annette; van Thriel, Christoph
    It has been widely recognized that nanosafety studies are limited in reproducibility, caused by missing or inadequate information and data gaps. Reliable and comprehensive studies should be performed supported by standards or guidelines, which need to be harmonized and usable for the multidisciplinary field of nanosafety research. The previously described minimal information table (MIT), based on existing standards or guidelines, represents one approach towards harmonization. Here, we demonstrate the applicability and advantages of the MIT by a round-robin test. Its modular structure enables describing individual studies comprehensively by a combination of various relevant aspects. Three laboratories conducted a WST-1 cell viability assay using A549 cells to analyze the effects of the reference nanomaterials NM101 and NM110 according to predefined (S)OPs. The MIT contains relevant and defined descriptive information and quality criteria and thus supported the implementation of the round-robin test from planning, investigation to analysis and data interpretation. As a result, we could identify sources of variability and justify deviating results attributed to differences in specific procedures. Consequently, the use of the MIT contributes to the acquisition of reliable and comprehensive datasets and therefore improves the significance and reusability of nanosafety studies