Search Results

Now showing 1 - 4 of 4
  • Item
    Climate change and international migration: Exploring the macroeconomic channel
    (San Francisco, California, US : PLOS, 2022) Rikani, Albano; Frieler, Katja; Schewe, Jacob
    International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3°C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.
  • Item
    Photobiomodulation of lymphatic drainage and clearance: Perspective strategy for augmentation of meningeal lymphatic functions
    (Washington, DC : Optica, 2020) Semyachkina-Glushkovskaya, Oxana; Abdurashitov, Arkady; Dubrovsky, Alexander; Klimova, Maria; Agranovich, Ilana; Terskov, Andrey; Shirokov, Alexander; Vinnik, Valeria; Kuzmina, Anna; Lezhnev, Nikita; Blokhina, Inna; Shnitenkova, Anastassia; Tuchin, Valery; Rafailov, Edik; Kurths, Jurgen
    There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.
  • Item
    Corona crisis fuels racially profiled hate in social media networks
    (Amsterdam : Elsevier, 2020) Stechemesser, Annika; Wenz, Leonie; Levermann, Anders
    [No abstract available]
  • Item
    Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming
    (San Diego, Calif. : Elsevier, 2020) Huber, Veronika; Krummenauer, Linda; Peña-Ortiz, Cristina; Lange, Stefan; Gasparrini, Antonio; Vicedo-Cabrera, Ana M.; Garcia-Herrera, Ricardo; Frieler, Katja
    Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993–2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82–7.19) and 0.81% (95%CI: 0.72–0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: −0.02–1.06) at 3 °C, 1.53% (95%CI: 0.96–2.06) at 4 °C, and 2.88% (95%CI: 1.60–4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. © 2020 The Authors