Search Results

Now showing 1 - 6 of 6
  • Item
    Fluorescence Microscopy of the HIV-1 Envelope
    (Basel : MDPI, 2020) Carravilla, Pablo; Nieva, José L.; Eggeling, Christian
    Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.
  • Item
    An emerging Panton–Valentine leukocidin-positive CC5-meticillin-resistant Staphylococcus aureus-IVc clone recovered from hospital and community settings over a 17-year period from 12 countries investigated by whole-genome sequencing
    (Kidlington [u.a.] : Elsevier, 2022) Aloba, B.K.; Kinnevey, P.M.; Monecke, S.; Brennan, G.I.; O'Connell, B.; Blomfeldt, A.; McManus, B.A.; Schneider-Brachert, W.; Tkadlec, J.; Ehricht, R.; Senok, A.; Bartels, M.D.; Coleman, D.C.
    Background: A novel Panton–Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC)5-MRSA-IVc (‘Sri Lankan’ clone) was recently described from Sri Lanka. Similar isolates caused a recent Irish hospital outbreak. Aim: To investigate the international dissemination and diversity of PVL-positive CC5-MRSA-IVc isolates from hospital and community settings using whole-genome sequencing (WGS). Methods: Core-genome single nucleotide polymorphism (cgSNP) analysis, core-genome multi-locus sequence typing (cgMLST) and microarray-based detection of antimicrobial-resistance and virulence genes were used to investigate PVL-positive CC5-MRSA-IVc (N = 214 including 46 ‘Sri Lankan’ clone) from hospital and community settings in 12 countries over 17 years. Comparators included 29 PVL-positive and 23 PVL-negative CC5/ST5-MRSA-I/II/IVa/IVc/IVg/V. Results: Maximum-likelihood cgSNP analysis grouped 209/214 (97.7%) CC5-MRSA-IVc into Clade I; average of 110 cgSNPs between isolates. Clade III contained the five remaining CC5-MRSA-IVc; average of 92 cgSNPs between isolates. Clade II contained seven PVL-positive CC5-MRSA-IVa comparators, whereas the remaining 45 comparators formed an outlier group. Minimum-spanning cgMLST analysis revealed a comparably low average of 57 allelic differences between all CC5/ST5-MRSA-IVc. All 214 CC5/ST5-MRSA-IVc were identified as ‘Sri Lankan’ clone, predominantly spa type t002 (186/214) with low population diversity and harboured a similar range of virulence genes and variable antimicrobial-resistance genes. All 214 Sri Lankan clone isolates and Clade II comparators harboured a 9616-bp chromosomal PVL-encoding phage remnant, suggesting both arose from a PVL-positive meticillin-susceptible ancestor. Over half of Sri Lankan clone isolates were from infections (142/214), and where detailed metadata were available (168/214), most were community associated (85/168). Conclusions: Stable chromosomal retention of pvl may facilitate Sri-Lankan clone dissemination.
  • Item
    Multiple distinct outbreaks of Panton-Valentine leucocidin-positive community-associated meticillin-resistant Staphylococcus aureus in Ireland investigated by whole-genome sequencing
    (Kidlington [u.a.] : Elsevier, 2021) McManus, B.A.; Aloba, B.K.; Earls, M.R.; Brennan, G.I.; O'Connell, B.; Monecke, S.; Ehricht, R.; Shore, A.C.; Coleman, D.C.
    Background Panton–Valentine leucocidin (PVL)-positive community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA) is increasingly associated with infection outbreaks. Aim To investigate multiple suspected PVL-positive CA-MRSA outbreaks using whole-genome sequencing (WGS). Methods Forty-six suspected outbreak-associated isolates from 36 individuals at three separate Irish hospitals (H1–H3) and from separate incidents involving separate families associated with H2 were investigated by whole-genome multi-locus sequence typing (wgMLST). Findings Two clusters (CH1 and CH2) consisting of 8/10 and 6/6 PVL-positive t008 ST8-MRSA-IVa isolates from H1 and H2, respectively, were identified. Within each cluster, neighbouring isolates were separated by ≤5 allelic differences; however, ≥73 allelic differences were identified between the clusters, indicating two independent outbreaks. Isolates from the H3 maternity unit formed two clusters (CH3–SCI and CH3–SCII) composed of four PVL-negative t4667 ST5-MRSA-V and 14 PVL-positive t002 ST5-MRSA-IVc isolates, respectively. Within clusters, neighbouring isolates were separated by ≤24 allelic differences, whereas both clusters were separated by 1822 allelic differences, indicating two distinct H3 outbreaks. Eight PVL-positive t127 ST1-MRSA-V+fus and three PVL-negative t267 ST97-MRSA-V+fus isolates from two distinct H2-associated families FC1 (N = 4) and FC2 (N = 7) formed three separate clusters (FC1 (t127), FC2 (t127) and FC2 (t267)). Neighbouring isolates within clusters were closely related and exhibited ≤7 allelic differences. Intrafamilial transmission was apparent, but the detection of ≥48 allelic differences between clusters indicated no interfamilial transmission. Conclusion The frequent importation of PVL-positive CA-MRSA into healthcare settings, transmission and association with outbreaks is a serious ongoing concern. WGS is a highly discriminatory, informative method for deciphering such outbreaks conclusively.
  • Item
    Super-Resolution STED Microscopy-Based Mobility Studies of the Viral Env Protein at HIV-1 Assembly Sites of Fully Infected T-Cells
    (Basel : MDPI, 2021) Chojnacki, Jakub; Eggeling, Christian
    The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.
  • Item
    Molecular epidemiology of methicillin-susceptible and methicillin-resistant staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the Nasal S. aureus Population
    (Basel : MDPI, 2020) Raafat, Dina; Mrochen, Daniel M.; Al’Sholui, Fawaz; Heuser, Elisa; Ryll, René; Pritchett-Corning, Kathleen R.; Jacob, Jens; Walther, Bernd; Matuschka, Franz-Rainer; Richter, Dania; Westerhüs, Uta; Pikula, Jiri; van den Brandt, Jens; Nicklas, Werner; Monecke, Stefan; Strommenger, Birgit; van Alen, Sarah; Becker, Karsten; Ulrich, Rainer G.; Holtfreter, Silva
    Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Freeliving wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively. © 2020 by the authors.
  • Item
    Laboratory-Developed Tests: Design of a Regulatory Strategy in Compliance with the International State-of-the-Art and the Regulation (EU) 2017/746 (EU IVDR [In Vitro Diagnostic Medical Device Regulation])
    ([New York] : Springer Nature, 2022) Spitzenberger, Folker; Patel, Jaimin; Gebuhr, Inga; Kruttwig, Klaus; Safi, Abdulrahim; Meisel, Christian
    Purpose: This study aimed at the development of a regulatory strategy for compliance of laboratory-developed tests (LDTs) with requirements of the Regulation (EU) 2017/746 (“EU-IVDR”) under consideration of international requirements for LDTs as established in major regulatory regions. Furthermore, it was analysed in how far elements of current LDT regulation could qualify for an internationally harmonised concept ensuring quality, safety and performance of LDTs. Methods: A review of regulatory literature including legislation as well as guidance documents was performed. The regulatory strategy was adapted from international guidance concepts used for commercially marketed IVD. It was then applied to the example of a large medical laboratory in the EU. A high-level comparison was conducted to identify gaps and matches between the different international regulatory requirements for LDTs. Results: A four-step strategy for compliance of LDTs with the EU IVDR was implemented in an exemplary medical laboratory. On the basis of an internationally used LDT definition, LDTs constitute nearly 50% of the total IVD devices used in the laboratory. While an ISO 15189-compliant QMS is a major component, it should be accompanied by the application of appropriate processes for risk management, performance evaluation and continuous monitoring of LDTs. At least six criteria represent common characteristics of a potential, internationally convergent concept for the regulation/standardization of LDTs. Conclusions: This study confirms the impact of LDTs for individualized and innovative medical laboratory testing. Prerequisites for LDT use as especially given by the IVDR and missing interpretation in the EU with regard to the scope of LDT definition, the application of standards and the extent of documentation for LDTs currently lead to uncertainties for both laboratories and regulatory bodies responsible for LDT oversight. The characteristics identified as common criteria for ensuring quality, safety and performance of LDTs may be considered as central elements of future international consensus guidance. © 2021, The Author(s).