Search Results

Now showing 1 - 10 of 11
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Bristol : IOP Publ., 2020) Koester, J.-P.; Putz, A.; Wenzel, H.; Wünsche, H.-J.; Radziunas, M.; Stephan, H.; Wilkens, M.; Zeghuzi, A.; Knigge, A.
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Low-rank tensor reconstruction of concentrated densities with application to Bayesian inversion
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Eigel, Martin; Gruhlke, Robert; Marschall, Manuel
    This paper presents a novel method for the accurate functional approximation of possibly highly concentrated probability densities. It is based on the combination of several modern techniques such as transport maps and low-rank approximations via a nonintrusive tensor train reconstruction. The central idea is to carry out computations for statistical quantities of interest such as moments based on a convenient representation of a reference density for which accurate numerical methods can be employed. Since the transport from target to reference can usually not be determined exactly, one has to cope with a perturbed reference density due to a numerically approximated transport map. By the introduction of a layered approximation and appropriate coordinate transformations, the problem is split into a set of independent approximations in seperately chosen orthonormal basis functions, combining the notions h- and p-refinement (i.e. “mesh size” and polynomial degree). An efficient low-rank representation of the perturbed reference density is achieved via the Variational Monte Carlo method. This nonintrusive regression technique reconstructs the map in the tensor train format. An a priori convergence analysis with respect to the error terms introduced by the different (deterministic and statistical) approximations in the Hellinger distance and the Kullback–Leibler divergence is derived. Important applications are presented and in particular the context of Bayesian inverse problems is illuminated which is a main motivation for the developed approach. Several numerical examples illustrate the efficacy with densities of different complexity and degrees of perturbation of the transport to the reference density. The (superior) convergence is demonstrated in comparison to Monte Carlo and Markov Chain Monte Carlo methods.
  • Item
    Decomposition of a Cooling Plant for Energy Efficiency Optimization Using OptTopo
    (Basel : MDPI, 2022) Thiele, Gregor; Johanni, Theresa; Sommer, David; Krüger, Jörg
    The operation of industrial supply technology is a broad field for optimization. Industrial cooling plants are often (a) composed of several components, (b) linked using network technology, (c) physically interconnected, and (d) complex regarding the effect of set-points and operating points in every entity. This leads to the possibility of overall optimization. An example containing a cooling tower, water circulations, and chillers entails a non-linear optimization problem with five dimensions. The decomposition of such a system allows the modeling of separate subsystems which can be structured according to the physical topology. An established method for energy performance indicators (EnPI) helps to formulate an optimization problem in a coherent way. The novel optimization algorithm OptTopo strives for efficient set-points by traversing a graph representation of the overall system. The advantages are (a) the ability to combine models of several types (e.g., neural networks and polynomials) and (b) an constant runtime independent from the number of operation points requested because new optimization needs just to be performed in case of plant model changes. An experimental implementation of the algorithm is validated using a simscape simulation. For a batch of five requests, OptTopo needs 61 (Formula presented.) while the solvers Cobyla, SDPEN, and COUENNE need 0.3 min, 1.4 min, and 3.1 min, respectively. OptTopo achieves an efficiency improvement similar to that of established solvers. This paper demonstrates the general feasibility of the concept and fortifies further improvements to reduce computing time.
  • Item
    Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
    (Weinheim : Wiley-VCH, 2020) Zheng, Yichu; Fischer, Axel; Sawatzki, Michael; Doan, Duy Hai; Liero, Matthias; Glitzky, Annegret; Reineke, Sebastian; Mannsfeld, Stefan C.B.
    In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p-i-n-metal-oxide-semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode-based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write-read-erase-read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady-state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Electrothermal Tristability Causes Sudden Burn-In Phenomena in Organic LEDs
    (Weinheim : Wiley-VCH, 2021) Kirch, Anton; Fischer, Axel; Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Reineke, Sebastian
    Organic light-emitting diodes (OLEDs) have been established as a mature display pixel technology. While introducing the same technology in a large-area form factor to general lighting and signage applications, some key questions remain unanswered. Under high-brightness conditions, OLED panels were reported to exhibit nonlinear electrothermal behavior causing lateral brightness inhomogeneities and even regions of switched-back luminance. Also, the physical understanding of sudden device failure and burn-ins is still rudimentary. A safe and stable operation of lighting tiles, therefore, requires an in-depth understanding of these physical phenomena. Here, it is shown that the electrothermal treatment of thin-film devices allows grasping the underlying physics. Configurations of OLEDs with different lateral dimensions are studied as a role model and it is reported that devices exceeding a certain panel size develop three stable, self heating-induced operating branches. Switching between them causes the sudden formation of dark spots in devices without any preexisting inhomogeneities. A current-stabilized operation mode is commonly used in the lighting industry, as it ensures degradation-induced voltage adjustments. Here, it is demonstrated that a tristable operation always leads to destructive switching, independent of applying constant currents or voltages. With this new understanding of the effects at high operation brightness, it will be possible to adjust driving schemes accordingly, design more resilient system integrations, and develop additional failure mitigation strategies. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Modeling Polycrystalline Electrode-electrolyte Interfaces: The Differential Capacitance
    (Bristol : IOP Publishing, 2020) Müller, Rüdiger; Fuhrmann, Jürgen; Landstorfer, Manuel
    We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter dfacet →0 we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit 1[nm] < dfacet, an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    A discussion of the cell voltage during discharge of an intercalation electrode for various C-rates based on non-equilibrium thermodynamics and numerical simulations
    (Bristol : IOP Publishing, 2020) Landstorfer, Manuel
    In this work we discuss the modeling procedure and validation of a non-porous intercalation half-cell during galvanostatic discharge. The modeling is based on continuum thermodynamics with non-equilibrium processes in the active intercalation particle, the electrolyte, and the common interface where the intercalation reaction Li+ + e- ↔ Li occurs. The model is in detail investigated and discussed in terms of scalings of the non-equilibrium parameters, i.e. the diffusion coefficients DA and DE of the active phase and the electrolyte, conductivity sA and sE of both phases, and the exchange current density e0L, with numerical solutions of the underlying PDE system. The current density i as well as all non-equilibrium parameters are scaled s with respect to the 1-C current density iC A of the intercalation electrode. We compute then numerically the cell voltage E as function of the capacity Q and the C-rate Ch. Within a hierarchy of approximations we provide computations of E(Q) for various scalings of the diffusion coefficients, the conductivities and the exchange current density. For the later we provide finally a discussion for possible concentration dependencies. © The Author(s) 2019. Published by ECS.
  • Item
    Calculation of the steady states in dynamic semiconductor laser models
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Radziunas, Mindaugas
    We discuss numerical challenges in calculating stable and unstable steady states of widely used dynamic semiconductor laser models. Knowledge of these states is valuable when analyzing laser dynamics and different properties of the lasing states. The example simulations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady state defining conditions are formulated as a system of nonlinear algebraic equations. The performed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial bias threshold relations in lasers with several electrical contacts, or predict and explain transient dynamics when simulating such lasers.
  • Item
    Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Maltsi, Anieza; Niermann, Tore; Streckenbach, Timo; Tabelow, Karsten; Koprucki, Thomas
    We present a mathematical model and a tool chain for the numerical simulation of TEM images of semiconductor quantum dots (QDs). This includes elasticity theory to obtain the strain profile coupled with the Darwin–Howie–Whelan equations, describing the propagation of the electron wave through the sample. We perform a simulation study on indium gallium arsenide QDs with different shapes and compare the resulting TEM images to experimental ones. This tool chain can be applied to generate a database of simulated TEM images, which is a key element of a novel concept for model-based geometry reconstruction of semiconductor QDs, involving machine learning techniques.
  • Item
    Detecting striations via the lateral photovoltage scanning method without screening effect
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Kayser, S.; Farrell, P.; Rotundo, N.
    The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and SixGe1−x in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an open-source finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient. For higher injection conditions, we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution.