Search Results

Now showing 1 - 10 of 11
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy
    (Melville, NY : AIP Publ., 2022) Song, Qi; Sun, Jiaxin; Parzyck, Christopher T.; Miao, Ludi; Xu, Qing; Hensling, Felix V. E.; Barone, Matthew R.; Hu, Cheng; Kim, Jinkwon; Faeth, Brendan D.; Paik, Hanjong; King, Phil D. C.; Shen, Kyle M.; Schlom, Darrell G.
    Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1-xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.
  • Item
    Role of topology in compensated magnetic systems
    (Melville, NY : AIP Publ., 2024) Reichlova, Helena; Kriegner, Dominik; Mook, Alexander; Althammer, Matthias; Thomas, Andy
    Topology plays a crucial and multifaceted role in solid state physics, leading to a remarkable array of newly investigated materials and phenomena. In this Perspective, we provide a brief summary of well-established model materials with a particular focus on compensated magnets and highlight key phenomena that emerge due to the influence of topology in these systems. The overview covers various magneto-transport phenomena, with a particular focus on the extensively investigated anomalous magneto-transport effects. Furthermore, we look into the significance of topology in understanding elementary magnetic excitations, namely magnons, where the role of topology gained considerable attention from both theoretical and experimental perspectives. Since electrons and magnons carry energy, we explore the implications of topology in combined heat and spin transport experiments in compensated magnetic systems. At the end of each section, we highlight intriguing unanswered questions in this research direction. To finally conclude, we offer our perspective on what could be the next advancements regarding the interaction between compensated magnetism and topology.
  • Item
    Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory
    (Melville, NY : AIP Publ., 2022) Seyidov, Palvan; Varley, Joel B.; Galazka, Zbigniew; Chou, Ta-Shun; Popp, Andreas; Fiedler, Andreas; Irmscher, Klaus
    Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.
  • Item
    Substrate-orientation dependence of β -Ga2O3 (100), (010), (001), and (2 ̄ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
    (Melville, NY : AIP Publ., 2020) Mazzolini, P.; Falkenstein, A.; Wouters, C.; Schewski, R.; Markurt, T.; Galazka, Z.; Martin, M.; Albrecht, M.; Bierwagen, O.
    We experimentally demonstrate how In-mediated metal-exchange catalysis (MEXCAT) allows us to widen the deposition window for β-Ga2O3 homoepitaxy to conditions otherwise prohibitive for its growth via molecular beam epitaxy (e.g., substrate temperatures ≥800 °C) on the major substrate orientations, i.e., (010), (001), (2⎯⎯01), and (100) 6°-offcut. The obtained crystalline qualities, surface roughnesses, growth rates, and In-incorporation profiles are shown and compared with different experimental techniques. The growth rates, Γ, for fixed growth conditions are monotonously increasing with the surface free energy of the different orientations with the following order: Γ(010) > Γ(001) > Γ(2⎯⎯01) > Γ(100). Ga2O3 surfaces with higher surface free energy provide stronger bonds to the surface ad-atoms or ad-molecules, resulting in decreasing desorption, i.e., a higher incorporation/growth rate. The structural quality in the case of (2⎯⎯01), however, is compromised by twin domains due to the crystallography of this orientation. Notably, our study highlights β-Ga2O3 layers with high structural quality grown by MEXCAT-MBE not only in the most investigated (010) orientation but also in the (100) and (001) ones. In particular, MEXCAT on the (001) orientation results in both growth rate and structural quality comparable to the ones achievable with (010), and the limited incorporation of In associated with the MEXCAT deposition process does not change the insulating characteristics of unintentionally doped layers. The (001) surface is therefore suggested as a valuable alternative orientation for devices.
  • Item
    Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3
    (Melville, NY : AIP Publ., 2020) Wilhelm, Marek; Giesen, Margret; Duchoň, Tomáš; Moors, Marco; Mueller, David N.; Hackl, Johanna; Baeumer, Christoph; Hamed, Mai Hussein; Cao, Lei; Zhang, Hengbo; Petracic, Oleg; Glöß, Maria; Cramm, Stefan; Nemšák, Slavomír; Wiemann, Carsten; Dittmann, Regina; Schneider, Claus M.; Müller, Martina
    Magneto-ionic control of magnetism is a promising route toward the realization of non-volatile memory and memristive devices. Magneto-ionic oxides are particularly interesting for this purpose, exhibiting magnetic switching coupled to resistive switching, with the latter emerging as a perturbation of the oxygen vacancy concentration. Here, we report on electric-field-induced magnetic switching in a La0.7Sr0.3MnO3 (LSMO) thin film. Correlating magnetic and chemical information via photoemission electron microscopy, we show that applying a positive voltage perpendicular to the film surface of LSMO results in the change in the valence of the Mn ions accompanied by a metal-to-insulator transition and a loss of magnetic ordering. Importantly, we demonstrate that the voltage amplitude provides granular control of the phenomena, enabling fine-tuning of the surface electronic structure. Our study provides valuable insight into the switching capabilities of LSMO that can be utilized in magneto-ionic devices. © 2020 Author(s).
  • Item
    Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O
    (Melville, NY : AIP Publ., 2020) Hoffmann, Georg; Budde, Melanie; Mazzolini, Piero; Bierwagend, Oliver
    Sources of suboxides, providing several advantages over metal sources for the molecular beam epitaxy (MBE) of oxides, are conventionally realized by decomposing the corresponding oxide charge at extreme temperatures. By quadrupole mass spectrometry of the direct flux from an effusion cell, we compare this conventional approach to the reaction of a mixed oxide + metal charge as a source for suboxides with the examples of SnO2 + Sn → 2 SnO and Ga2O3 + 4 Ga → 3 Ga2O. The high decomposition temperatures of the pure oxide charge were found to produce a high parasitic oxygen background. In contrast, the mixed charges reacted at significantly lower temperatures, providing high suboxide fluxes without additional parasitic oxygen. For the SnO source, we found a significant fraction of Sn2O2 in the flux from the mixed charge that was basically absent in the flux from the pure oxide charge. We demonstrate the plasma-assisted MBE growth of SnO2 using the mixed Sn + SnO2 charge to require less activated oxygen and a significantly lower source temperature than the corresponding growth from a pure Sn charge. Thus, the sublimation of mixed metal + oxide charges provides an efficient suboxide source for the growth of oxides by MBE. Thermodynamic calculations predict this advantage for further oxides as well, e.g., SiO2, GeO2, Al2O3, In2O3, La2O3, and Pr2O3 © 2020 Author(s).
  • Item
    Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis
    (Melville, NY : AIP Publ., 2020) Adkison, Kate M.; Shang, Shun-Li; Bocklund, Brandon J.; Klimm, Detlef; Schlom, Darrell G.; Liu, Zi-Kui
    We have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature. © 2020 Author(s).
  • Item
    Refractory metal-based ohmic contacts on β-Ga2O3 using TiW
    (Melville, NY : AIP Publ., 2022) Tetzner, Kornelius; Schewski, Robert; Popp, Andreas; Anooz, Saud Bin; Chou, Ta-Shun; Ostermay, Ina; Kirmse, Holm; Würfl, Joachim
    The present work investigates the use of the refractory metal alloy TiW as a possible candidate for the realization of ohmic contacts to the ultrawide bandgap semiconductor β-Ga2O3. Ohmic contact properties were analyzed by transfer length measurements of TiW contacts annealed at temperatures between 400 and 900 °C. Optimum contact properties with a contact resistance down to 1.5 × 10-5 ω cm2 were achieved after annealing at 700 °C in nitrogen on highly doped β-Ga2O3. However, a significant contact resistance increase was observed at annealing temperatures above 700 °C. Cross-sectional analyses of the contacts using scanning transmission electron microscopy revealed the formation of a TiOx interfacial layer of 3-5 nm between TiW and β-Ga2O3. This interlayer features an amorphous structure and most probably possesses a high amount of vacancies and/or Ga impurities supporting charge carrier injection. Upon annealing at temperatures of 900 °C, the interlayer increases in thickness up to 15 nm, featuring crystalline-like properties, suggesting the formation of rutile TiO2. Although severe morphological changes at higher annealing temperatures were also verified by atomic force microscopy, the root cause for the contact resistance increase is attributed to the structural changes in thickness and crystallinity of the interfacial layer.
  • Item
    Synthesis of metastable Ruddlesden–Popper titanates, (ATiO3)nAO, with n ≥ 20 by molecular-beam epitaxy
    (Melville, NY : AIP Publ., 2022) Barone, Matthew R.; Jeong, Myoungho; Parker, Nicholas; Sun, Jiaxin; Tenne, Dmitri A.; Lee, Kiyoung; Schlom, Darrell G.
    We outline a method to synthesize (ATiO3)nAO Ruddlesden–Popper phases with high-n, where the A-site is a mixture of barium and strontium, by molecular-beam epitaxy. The precision and consistency of the method described is demonstrated by the growth of an unprecedented (SrTiO3)50SrO epitaxial film. We proceed to investigate barium incorporation into the Ruddlesden–Popper structure, which is limited to a few percent in bulk, and we find that the amount of barium that can be incorporated depends on both the substrate temperature and the strain state of the film. At the optimal growth temperature, we demonstrate that as much as 33% barium can homogeneously populate the A-site when films are grown on SrTiO3 (001) substrates, whereas up to 60% barium can be accommodated in films grown on TbScO3 (110) substrates, which we attribute to the difference in strain. This detailed synthetic study of high n, metastable Ruddlesden–Popper phases is pertinent to a variety of fields from quantum materials to tunable dielectrics