Search Results

Now showing 1 - 2 of 2
  • Item
    Pentacene in 1,3,5-Tri(1-naphtyl)benzene: A Novel Standard for Transient EPR Spectroscopy at Room Temperature
    (Wien [u.a.] : Springer, 2021) Schröder, Mirjam; Rauber, Daniel; Matt, Clemens; Kay, Christopher W. M.
    Testing and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the B1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy. © 2021, The Author(s).
  • Item
    Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting
    (Weinheim : Wiley-VCH Verlag, 2020) Hermans Y.; Klein A.; Sarker H.P.; Huda M.N.; Junge H.; Toupance T.; Jaegermann W.
    CuFeO2 is recognized as a potential photocathode for photo(electro)chemical water splitting. However, photocurrents with CuFeO2-based systems are rather low so far. In order to optimize charge carrier separation and water reduction kinetics, defined CuFeO2/Pt, CuFeO2/Ag, and CuFeO2/NiOx(OH)y heterostructures are made in this work through a photodeposition procedure based on a 2H CuFeO2 hexagonal nanoplatelet shaped powder. However, water splitting performance tests in a closed batch photoreactor show that these heterostructured powders exhibit limited water reduction efficiencies. To test whether Fermi level pinning intrinsically limits the water reduction capacity of CuFeO2, the Fermi level tunability in CuFeO2 is evaluated by creating CuFeO2/ITO and CuFeO2/H2O interfaces and analyzing the electronic and chemical properties of the interfaces through photoelectron spectroscopy. The results indicate that Fermi level pinning at the Fe3+/Fe2+ electron polaron formation level may intrinsically prohibit CuFeO2 from acquiring enough photovoltage to reach the water reduction potential. This result is complemented with density functional theory calculations as well. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim