Search Results

Now showing 1 - 4 of 4
  • Item
    Ultrafast laser inscription of asymmetric integrated waveguide 3 dB couplers for astronomical K-band interferometry at the CHARA array
    (Washington, DC : Soc., 2021) Benoît, Aurélien; Pike, Fraser A.; Sharma, Tarun K.; MacLachlan, David G.; Dinkelaker, Aline N.; Nayak, Abani S.; Madhav, Kalaga; Roth, Martin M.; Labadie, Lucas; Pedretti, Ettore; Brummelaar, Theo A. ten; Scott, Nic; Coudé du Foresto, Vincent; Thomson, Robert R.
    We present the fabrication and characterization of 3 dB asymmetric directional couplers for the astronomical K-band at wavelengths between 2.0 and 2.4 µm. The couplers were fabricated in commercial Infrasil silica glass using an ultrafast laser operating at 1030 nm. After optimizing the fabrication parameters, the insertion losses of straight single-mode waveguides were measured to be ∼1.2±0.5dB across the full K-band. We investigate the development of asymmetric 3 dB directional couplers by varying the coupler interaction lengths and by varying the width of one of the waveguide cores to detune the propagation constants of the coupled modes. In this manner, we demonstrate that ultrafast laser inscription is capable of fabricating asymmetric 3 dB directional couplers for future applications in K-band stellar interferometry. Finally, we demonstrate that our couplers exhibit an interferometric fringe contrast of >90%. This technology paves the path for the development of a two-telescope K-band integrated optic beam combiner for interferometry to replace the existing beam combiner (MONA) in Jouvence of the Fiber Linked Unit for Recombination (JouFLU) at the Center for High Angular Resolution Astronomy (CHARA) telescope array.
  • Item
    Photonic lanterns: a practical guide to filament tapering
    (Washington, DC : OSA, 2021) Davenport, John J.; Diab, Momen; Deka, Pranab J.; Tripathi, Aashana; Madhav, Kalaga; Roth, Martin M.
    We present a detailed method of tapering and drawing photonic lanterns using a filament glass processing system. Single-mode fibers (SMFs) were stacked inside a low refractive index, fluorine-doped capillary, which was then heated and tapered to produce a transition from single-mode to multi-mode. Fabrication parameters were considered in four categories: method of preparation and stacking of SMFs into a capillary, heat and filament dimensions of the glass processor, capillary ID, and the use of vacuum during tapering. 19- and 37- fiber lanterns were drawn, demonstrating good fusion between SMF claddings, a clear differentiation between core and cladding in the multimode (MM) section, and well-ordered arrangements between SMFs, which is controlled during the tapering process. The transmission efficiency of a 19-fiber photonic lantern, compared to an MMF with the same core diameter and NA, has a relative transmission efficiency of 1.19 dB or 67.1%. The steps and parameters provided in this paper form a framework for fabricating quality photonic lanterns.
  • Item
    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique
    (Basel : MDPI, 2020) Korinth, Florian; Schmälzlin, Elmar; Stiebing, Clara; Urrutia, Tanya; Micheva, Genoveva; Sandin, Christer; Müller, André; Maiwald, Martin; Sumpf, Bernd; Krafft, Christoph; Tränkle, Günther; Roth, Martin M; Popp, Jürgen
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.
  • Item
    Type III Radio Bursts Observations on 20th August 2017 and 9th September 2017 with LOFAR Bałdy Telescope
    (Basel : MDPI, 2021) Dabrowski, Bartosz; Flisek, Paweł; Mikuła, Katarzyna; Froń, Adam; Vocks, Christian; Magdalenić, Jasmina; Krankowski, Andrzej; Zhang, PeiJin; Zucca, Pietro; Mann, Gottfried
    We present the observations of two type III solar radio events performed with LOFAR (LOw-Frequency ARray) station in Bałdy (PL612), Poland in single mode. The first event occurred on 20th August 2017 and the second one on 9th September 2017. Solar dynamic spectra were recorded in the 10 MHz up to 90 MHz frequency band. Together with the wide frequency bandwidth LOFAR telescope (with single station used) provides also high frequency and high sensitivity observations. Additionally to LOFAR observations, the data recorded by instruments on boards of the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory (SDO) in the UV spectral range complement observations in the radio field. Unfortunately, only the radio event from 9th September 2017 was observed by both satellites. Our study shows that the LOFAR single station observations, in combination with observations at other wavelengths can be very useful for better understanding of the environment in which the type III radio events occur.