Search Results

Now showing 1 - 3 of 3
  • Item
    Severe climate change risks to food security and nutrition
    (Amsterdam [u.a.] : Elsevier, 2022) Mirzabaev, Alisher; Bezner Kerr, Rachel; Hasegawa, Toshihiro; Pradhan, Prajal; Wreford, Anita; Tirado von der Pahlen, Maria Cristina; Gurney-Smith, Helen
    This paper discusses severe risks to food security and nutrition that are linked to ongoing and projected climate change, particularly climate and weather extremes in global warming, drought, flooding, and precipitation. We specifically consider the impacts on populations vulnerable to food insecurity and malnutrition due to lower income, lower access to nutritious food, or social discrimination. The paper defines climate-related “severe risk” in the context of food security and nutrition, using a combination of criteria, including the magnitude and likelihood of adverse consequences, the timing of the risk and the ability to reduce the risk. Severe climate change risks to food security and nutrition are those which result, with high likelihood, in pervasive and persistent food insecurity and malnutrition for millions of people, have the potential for cascading effects beyond the food systems, and against which we have limited ability to prevent or fully respond. The paper uses internationally agreed definitions of risks to food security and nutrition to describe the magnitude of adverse consequences. Moreover, the paper assesses the conditions under which climate change-induced risks to food security and nutrition could become severe based on findings in the literature using different climate change scenarios and shared socioeconomic pathways. Finally, the paper proposes adaptation options, including institutional management and governance actions, that could be taken now to prevent or reduce the severe climate risks to future human food security and nutrition.
  • Item
    Understanding adaptive capacity of smallholder African indigenous vegetable farmers to climate change in Kenya
    (Amsterdam [u.a.] : Elsevier, 2020) Chepkoech, Winifred; Mungai, Nancy W.; Stöber, Silke; Lotze-Campen, Hermann
    Understanding the adaptive capacity (AC) of farmers is crucial to planning effective adaptation. Action to promote farmers’ AC is required because climate change (CC) is resulting in unpredictable alterations in weather patterns. Based on the sustainable livelihoods framework (SLF), this study explored how access to natural, physical, financial, social and human capitals enhances the AC. Quantitative data from 269 African indigenous vegetable (AIV) farmers in three selected agro-climatic zones in Kenya were analysed. Four indicators in each capital were selected based on previous studies and judgments collected from an expert online ranking survey (n = 35). The Kruskal-Wallis H test and an independent sample t-test were used to test the independence of AC scores and access to the different resources. The findings showed that the majority of farmers (53%) had a moderate AC, while fewer (32%) and (15%) had low or high AC levels respectively. Disparities in adaptive capacity scores were recorded between respondents in terms of their age, marital status and location. Farmers had high access to social capital but low access to financial, natural and human capitals. Female farmers showed lower capacities in the areas of financial, human and natural resources, while their male counterparts had low access to some human and social capitals. Resilient interventions that target individuals with low adaptive capacities are required. © 2020 The Authors
  • Item
    Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis
    (Amsterdam : Elsevier ScienceDirect, 2021) Booshehri, Meisam; Emele, Lukas; Flügel, Simon; Förster, Hannah; Frey, Johannes; Frey, Ulrich; Glauer, Martin; Hastings, Janna; Hofmann, Christian; Hoyer-Klick, Carsten; Hülk, Ludwig; Kleinau, Anna; Knosala, Kevin; Kotzur, Leander; Kuckertz, Patrick; Mossakowski, Till; Muschner, Christoph; Neuhaus, Fabian; Pehl, Michaja; Robinius, Martin; Sehn, Vera; Stappel, Mirjam
    Heterogeneous data, different definitions and incompatible models are a huge problem in many domains, with no exception for the field of energy systems analysis. Hence, it is hard to re-use results, compare model results or couple models at all. Ontologies provide a precisely defined vocabulary to build a common and shared conceptualisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent annotation of large amounts of data from various research projects. One example is the Open Energy Platform (OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable. Second, computational model coupling becomes much easier. The advantages of using an ontology such as the OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation. We also describe how the ontology can be used for linked open data (LOD).