Search Results

Now showing 1 - 10 of 51
  • Item
    Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
    (Basel : MDPI, 2020) Herppich, Werner B.; Gusovius, Hans-Jörg; Flemming, Inken; Drastig, Katrin
    Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.
  • Item
    Airflow resistance of two hop varieties
    (Tartu : Estonian Agricultural University, Faculty of Agronomy, 2021) Ziegler, T.; Teodorov, T.
    The quality of hops used in brewing is substantially reliant upon the processing step of drying. To ensure effective drying in kiln as well conveyor-belt dryers, homogeneous distribution of air is of particular importance. Uneven air distribution often results in inefficient drying and nonuniform moisture content of the hop cones. The air distribution naturally is governed by the airflow resistances in the individual floors or belts of a dryer. Hence, in order to quantify the airflow resistance of hop cones at different air velocities and bed heights, systematic measurements were carried out. In addition to determining the bulk densities of hops, the investigations included trials with fresh and dried hop samples. Clear differences were observed between hop varieties both in measured pressure drops and in bulk densities. Moreover, in the case of fresh hops, a non-linear increase in pressure drop with bed height was ascertained. Semiempirical equations were developed to describe pressure drop as a function of air velocity. This work will contribute to the design of dryers with optimum airflow distribution and thus enhance the efficiency of drying as well as the product quality.
  • Item
    Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India
    (Basel : MDPI, 2022) Huded, Sharanabasav; Pramesh, Devanna; Chittaragi, Amoghavarsha; Sridhara, Shankarappa; Chidanandappa, Eranna; Prasannakumar, Muthukapalli K.; Manjunatha, Channappa; Patil, Balanagouda; Shil, Sandip; Pushpa, Hanumanthappa Deeshappa; Raghunandana, Adke; Usha, Indrajeet; Balasundram, Siva K.; Shamshiri, Redmond R.
    False smut disease (FSD) of rice incited by Ustilaginoidea virens is an emerging threat to paddy cultivation worldwide. We investigated the spatial distribution of FSD in different paddy ecosystems of South Indian states, viz., Andhra Pradesh, Karnataka, Tamil Nadu, and Telangana, by considering the exploratory data from 111 sampling sites. Point pattern and surface interpolation analyses were carried out to identify the spatial patterns of FSD across the studied areas. The spatial clusters of FSD were confirmed by employing spatial autocorrelation and Ripley’s K function. Further, ordinary kriging (OK), indicator kriging (IK), and inverse distance weighting (IDW) were used to create spatial maps by predicting the values at unvisited locations. The agglomerative hierarchical cluster analysis using the average linkage method identified four main clusters of FSD. From the Local Moran’s I statistic, most of the areas of Andhra Pradesh and Tamil Nadu were clustered together (at I > 0), except the coastal and interior districts of Karnataka (at I < 0). Spatial patterns of FSD severity were determined by semi-variogram experimental models, and the spherical model was the best fit. Results from the interpolation technique, the potential FSD hot spots/risk areas were majorly identified in Tamil Nadu and a few traditional rice-growing ecosystems of Northern Karnataka. This is the first intensive study that attempted to understand the spatial patterns of FSD using geostatistical approaches in India. The findings from this study would help in setting up ecosystem-specific management strategies to reduce the spread of FSD in India.
  • Item
    Optical Spectrometry to Determine Nutrient Concentrations and other Physicochemical Parameters in Liquid Organic Manures: A Review
    (Basel : MDPI, 2022) Horf, Michael; Vogel, Sebastian; Drücker, Harm; Gebbers, Robin; Olfs, Hans-Werner
    Nutrient concentrations in livestock manures and biogas digestates show a huge variability due to disparities in animal husbandry systems concerning animal species, feed composition, etc. Therefore, a nutrient estimation based on recommendation tables is not reliable when the exact chemical composition is needed. The alternative, to analyse representative fertilizer samples in a standard laboratory, is too time-and cost-intensive to be an accepted routine method for farmers. However, precise knowledge about the actual nutrient concentrations in liquid organic fertilizers is a prerequisite to ensure optimal nutrient supply for growing crops and on the other hand to avoid environmental problems caused by overfertilization. Therefore, spectrometric methods receive increasing attention as fast and low-cost alternatives. This review summarizes the present state of research based on optical spectrometry used at laboratory and field scale for predicting several parameters of liquid organic manures. It emphasizes three categories: (1) physicochemical parameters, e.g., dry matter, pH, and electrical conductivity; (2) main plant nutrients, i.e., total nitrogen, ammonium nitrogen, phosphorus, potassium, magnesium, calcium, and sulfur; and (3) micronutrients, i.e., manganese, iron, copper, and zinc. Furthermore, the commonly used sample preparation techniques, spectrometer types, measuring modes, and chemometric methods are presented. The primarily promising scientific results of the last 30 years contributed to the fact that near-infrared spectrometry (NIRS) was established in commercial laboratories as an alternative method to wet chemical standard methods. Furthermore, companies developed technical setups using NIRS for on-line applications of liquid organic manures. Thus, NIRS seems to have evolved to a competitive measurement procedure, although parts of this technique still need to be improved to ensure sufficient accuracy, especially in quality management.
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review
    (Basel : MDPI, 2021-4-14) Wang, Cong; Amon, Barbara; Schulz, Karsten; Mehdi, Bano
    Nitrous oxide (N2O) is a long-lived greenhouse gas that contributes to global warming. Emissions of N2O mainly stem from agricultural soils. This review highlights the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement. Within these categories, each impact factor is explained in detail and its influence on N2O emissions from the soil is summarized. It is also shown how each impact factor influences other impact factors. Process-based simulation models used for estimating N2O emissions are reviewed regarding their ability to consider the impact factors in simulating N2O. The model strengths and weaknesses in simulating N2O emissions from managed soils are summarized. Finally, three selected process-based simulation models (Daily Century (DAYCENT), DeNitrification-DeComposition (DNDC), and Soil and Water Assessment Tool (SWAT)) are discussed that are widely used to simulate N2O emissions from cropping systems. Their ability to simulate N2O emissions is evaluated by describing the model components that are relevant to N2O processes and their representation in the model.
  • Item
    Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe
    (Berlin ; Heidelberg : Springer, 2022) Díaz de Otálora, Xabier; Dragoni, Federico; Del Prado, Agustín; Estellés, Fernándo; Wilfart, Aurélie; Krol, Dominika; Balaine, Lorraine; Anestis, Vasileios; Amon, Barbara
    European dairy production faces significant economic, environmental, and social sustainability challenges. Given the great diversity of dairy cattle production systems in Europe, region-specific concepts to improve environmental and socioeconomic sustainability are needed. Regionally integrated dairy cattle-crop systems emerge as a more resilient and sustainable alternative to highly specialized farming systems. Identifying different dairy cattle production typologies and their potential interactions with fodder crop production is presented as a step in transitioning to optimized agricultural systems. Currently existing typologies of integrated systems are often insufficient when characterizing structural, socioeconomic, and environmental components of farms. We fill this gap in the literature by identifying, describing, and comparing representative dairy cattle production system typologies and their interrelation with regional fodder crop production at the European regional scale. This is a necessary step to assess the scope for adapted mitigation and sustainability measures in the future. For this purpose, a multivariate statistical approach is applied. We show how different land-use practices, farm structure characteristics, socio-economic attributes, and emission intensities condition dairy production. Furthermore, the diversity of regional fodder crop production systems is demonstrated by analyzing their distribution in Europe. Together with identified typologies, varying degrees of regional specialization in milk production allow for identifying future strategies associated with the application of integrated systems in key European dairy regions. This study contributes to a better understanding of the existing milk production diversity in Europe and their relationship with regional fodder crop production. In addition, we discuss the benefits of integrated systems as a clear, viable, and resilient alternative to ongoing livestock intensification in the European context. Identifying interactions between components of integrated systems will facilitate decision-making, the design and implementation of measures to mitigate climate change, and the promotion of positive socio-economic and environmental interactions.
  • Item
    A Parametric Model for Local Air Exchange Rate of Naturally Ventilated Barns
    (Basel : MDPI AG, 2021) Doumbia, E. Moustapha; Janke, David; Yi, Qianying; Prinz, Alexander; Amon, Thomas; Kriegel, Martin; Hempel, Sabrina
    With an increasing number of naturally ventilated dairy barns (NVDBs), the emission of ammonia and greenhouse gases into the surrounding environment is expected to increase as well. It is very challenging to accurately determine the amount of gases released from a NVDB on-farm. Moreover, control options for the micro-climate to increase animal welfare are limited in an NVDB at present. Both issues are due to the complexity of the NVDB micro-environment, which is subject to temporal (such as wind direction and temperature) and spatial (such as openings and animals acting as airflow obstacles) fluctuations. The air exchange rate (AER) is one of the most valuable evaluation entities, since it is directly related to the gas emission rate and animal welfare. In this context, our study determined the general and local AERs of NVDBs of different shapes under diverse airflow conditions. Previous works identified main influencing parameters for the general AER and mathematically linked them together to predict the AER of the barn as a whole. The present research study is a continuation and extension of previous studies about the determination of AER. It provides new insights into the influence of convection flow regimes. In addition, it goes further in precision by determining the local AERs, depending on the position of the considered volume inside the barn. After running several computational fluid dynamics (CFD) simulations, we used the statistical tool of general linear modeling in order to identify quantitative relationships between the AER and the following five influencing parameters, the length/width ratio of the barn, the side opening configuration, the airflow temperature, magnitude and incoming direction. The work succeeded in taking the temperature into account as a further influencing parameter in the model and, thus, for the first time, in analysing the effect of the different types of flow convection in this context. The resulting equations predict the barn AER with an R2 equals 0.98 and the local AER with a mean R2 equals around 0.87. The results go a step further in the precise determination of the AER of NVDB and, therefore, are of fundamental importance for a better and deeper understanding of the interaction between the driving forces of AER in NVDB.
  • Item
    Particulate Matter Dispersion Modeling in Agricultural Applications: Investigation of a Transient Open Source Solver
    (Basel : MDPI, 2021) Janke, David; Swaminathan, Senthilathiban; Hempel, Sabrina; Kasper, Robert; Amon, Thomas
    Agriculture is a major emitter of particulate matter (PM), which causes health problems and can act as a carrier of the pathogen material that spreads diseases. The aim of this study was to investigate an open-source solver that simulates the transport and dispersion of PM for typical agricultural applications. We investigated a coupled Eulerian–Lagrangian solver within the open source software package OpenFOAM. The continuous phase was solved using transient large eddy simulations, where four different subgrid-scale turbulence models and an inflow turbulence generator were tested. The discrete phase was simulated using two different Lagrangian solvers. For the validation case of a turbulent flow of a street canyon, the flowfield could be recaptured very well, with errors of around 5% for the non-equilibrium turbulence models (WALE and dynamicKeq) in the main regions. The inflow turbulence generator could create a stable and accurate boundary layer for the mean vertical velocity and vertical profile of the turbulent Reynolds stresses R11. The validation of the Lagrangian solver showed mixed results, with partly good agreements (simulation results within the measurement uncertainty), and partly high deviations of up to 80% for the concentration of particles. The higher deviations were attributed to an insufficient turbulence regime of the used validation case, which was an experimental chamber. For the simulation case of PM dispersion from manure application on a field, the solver could capture the influence of features such as size and density on the dispersion. The investigated solver is especially useful for further investigations into time-dependent processes in the near-source area of PM sources.
  • Item
    Base Neutralizing Capacity of Agricultural Soils in a Quaternary Landscape of North-East Germany and Its Relationship to Best Management Practices in Lime Requirement Determination
    (Basel : MDPI AG, 2020) Vogel, Sebastian; Bönecke, Eric; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Nagel, Anne; Philipp, Golo; Rühlmann, Jörg; Schröter, Ingmar; Gebbers, Robin
    Despite being a natural soil-forming process, soil acidification is a major agronomic challenge under humid climate conditions, as soil acidity influences several yield-relevant soil properties. It can be counterbalanced by the regular application of agricultural lime to maintain or re-establish soil fertility and to optimize plant growth and yield. To avoid underdose as well as overdose, lime rates need to be calculated carefully. The lime rate should be determined by the optimum soil pH (target pH) and the response of the soil to lime, which is described by the base neutralizing capacity (BNC). Several methods exist to determine the lime requirement (LR) to raise the soil pH to its optimum. They range from extremely time-consuming equilibration methods, which mimic the natural processes in the soil, to quick tests, which rely on some approximations and are designed to provide farmers with timely and cost-efficient data. Due to the higher analytical efforts, only limited information is available on the real BNC of particular soils. In the present paper, we report the BNC of 420 topsoil samples from Central Europe (north-east Germany), developed on sediments from the last ice age 10,000 years ago under Holocene conditions. These soils are predominantly sandy and low in humus, but they exhibit a huge spatial variability in soil properties on a small scale. The BNC was determined by adding various concentrations of Ca(OH)2 and fitting an exponential model to derive a titration curve for each sample. The coefficients of the BNC titration curve were well correlated with soil properties affecting soil acidity and pH buffer capacity, i.e., pH, soil texture and soil organic matter (SOM). From the BNC model, the LRs (LRBNC) were derived and compared with LRVDLUFA based on the standard protocol in Germany as established by the Association of German Agricultural Analytic and Research Institutes (VDLUFA). The LRBNC and LRVDLUFA correlated well but the LRVDLUFA were generally by approximately one order of magnitude higher. This is partly due to the VDLUFA concept to recommend a maintenance or conservation liming, even though the pH value is in the optimum range, to keep it there until the next lime application during the following rotation. Furthermore, the VDLUFA method was primarily developed from field experiments where natural soil acidification and management practices depressed the effect of lime treatment. The BNC method, on the other hand, is solely based on laboratory analysis with standardized soil samples. This indicates the demand for further research to develop a sound scientific algorithm that complements LRBNC with realistic values of annual Ca2+ removal and acidification by natural processes and N fertilization.