Search Results

Now showing 1 - 10 of 70
  • Item
    Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion
    (Berlin : Springer, 2022) Batalha, Weverson Capute; Batalha, Rodolfo Lisboa; Kosiba, Konrad; Kiminami, Claudio Shyinti; Gargarella, Piter
    The influence of scanning strategy (SS) on microstructure and mechanical properties of a Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion (L-PBF) is investigated for the first time. Three SSs are considered: unidirectional-Y; bi-directional with 79° rotation (R79); and chessboard (CHB). The SSs affect the type and distribution of pores. The highest relative densities and more homogeneous distribution of pores are obtained with R79 and CHB scanning strategies, whereas aligned pores are formed in the unidirectional-Y. The SSs show direct influence on the crystallographic texture with unidirectional-Y strategy showing fiber texture. The R79 strategy results in a weak texture and the CHB scanning strategy forms a randomly oriented heterogeneous grain structure. The lowest Young modulus is obtained with the unidirectional-Y strategy, whereas the R79 strategy results in the highest yield strength. It is shown that the SSs may be used for tuning the microstructure of a beta-Ti alloy in L-PBF.
  • Item
    Tailoring morphology in titania nanotube arrays by implantation: experiments and modelling on designed pore size—and beyond
    (London [u.a.] : Taylor & Francis, 2021) Kupferer, Astrid; Mändl, Stephan; Mayr, Stefan G.
    Titania nanotube arrays are an exceptionally adaptable material for various applications ranging from energy conversion to biomedicine. Besides electronic properties, structural morphology on nanometre scale is essential. It is demonstrated that ion implantation constitutes a versatile method for the synthesis of tailored nanotube morphologies. Experimental-phenomenological observations reveal a successive closing behaviour of nanotubes upon ion implantation. Employing molecular dynamics calculations in combination with analytical continuum models, the physical origins of this scenario are unravelled by identifying ion bombardment induced viscous flow driven by capillarity as its underlying mechanism besides minor contributions from sputtering and redeposition. These findings enable the tailoring of nanotube arrays suitable for manifold applications.
  • Item
    Self-Consistent Cathode–Plasma Coupling and Role of the Fluid Flow Approach in Torch Modeling
    (Boston, Mass. : Springer, 2021) Baeva, Margarita; Zhu, Tao; Kewitz, Thorben; Testrich, Holger; Foest, Rüdiger
    A two-dimensional and stationary magnetohydrodynamic model of a plasma spray torch operated with argon is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier–Stokes equations for a laminar and compressible flow are solved in terms of low and high Mach number numerical approaches. The results show that the Mach number can reach values close to one. Simulations are performed for electric currents of 600 A and 800 A, and gas flow rates of 40, 60, and 80 NLPM. The plasma parameters obtained by the two approaches differ, and the differences become more pronounced for higher currents and gas flow rates. The arc voltage, the electric power, and the thermal efficiency from both the low and high Mach number models of the plasma agree well with experimental findings for a current of 600 A and a flow rate of 40 NLPM. For higher currents and gas flow rates, the results of the low and high Mach number models gradually differ and underline the greater appropriateness of the high Mach number model.
  • Item
    Collagen-iron oxide nanoparticle based ferrogel: Large reversible magnetostrains with potential for bioactuation
    (Bristol : IOP Publishing, 2020) Jauch, Philine; Weidner, Andreas; Riedel, Stefanie; Wilharm, Nils; Dutz, Silvio; Mayr, Stefan G.
    Smart materials such as stimuli responsive polymeric hydrogels offer unique possibilities for tissue engineering and regenerative medicine. As, however, most synthetic polymer systems and their degradation products lack complete biocompatibility and biodegradability, this study aims to synthesize a highly magnetic responsive hydrogel, based on the abundant natural biopolymer collagen. As the main component of vertebratal extracellular matrix, it reveals excellent biocompatibility. In combination with incorporated magnetic iron oxide nanoparticles, a novel smart nano-bio-ferrogel can be designed. While retaining its basic biophysical properties and interaction with living cells, this collagen-nanoparticle hydrogel can be compressed to 38% of its original size and recovers to 95% in suitable magnetic fields. Besides the phenomenology of this scenario, the underlying physical scenarios are also discussed within the framework of network models. The observed reversible peak strains as large as 150% open up possibilities for the fields of biomedical actuation, soft robotics and beyond. © 2020 The Author(s). Published by IOP Publishing Ltd
  • Item
    Application of machine learning to object manipulation with bio-inspired microstructures
    (Rio de Janeiro : Elsevier, 2023) Samri, Manar; Thiemecke, Jonathan; Hensel, René; Arzt, Eduard
    Bioinspired fibrillar adhesives have been proposed for novel gripping systems with enhanced scalability and resource efficiency. Here, we propose an in-situ optical monitoring system of the contact signatures, coupled with image processing and machine learning. Visual features were extracted from the contact signature images recorded at maximum compressive preload and after lifting a glass object. The algorithm was trained to cope with several degrees of misalignment and with unbalanced weight distributions by off-center gripping. The system allowed an assessment of the picking process for objects of various mass (200, 300, and 400 g). Several classifiers showed a high accuracy of about 90 % for successful prediction of attachment, depending on the mass of the object. The results promise improved reliability of handling objects, even in difficult situations.
  • Item
    Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rowolt, Christian; Milkereit, Benjamin; Springer, Armin; Kreyenschulte, Carsten; Kessler, Olaf
    Continuous heating transformation (CHT) diagrams and continuous cooling transformation (CCT) diagrams of precipitation-hardening steels have the drawback that important information on the dissolution and precipitation of Cu-rich phases during continuous heating and cooling are missing. This work uses a comparison of different techniques, namely dilatometry and differential scanning calorimetry for the in situ analysis of the so far neglected dissolution and precipitation of Cu-rich phases during continuous heating and cooling to overcome these drawbacks. Compared to dilatometry, DSC is much more sensitive to phase transformation affecting small volume fractions, like precipitation. Thus, the important solvus temperature for the dissolution of Cu-rich phases was revealed from DSC and integrated into the CHT diagram. Moreover, DSC reveals that during continuous cooling from solution treatment, premature Cu-rich phases may form depending on cooling rate. Those quench-induced precipitates were analysed for a broad range of cooling rates and imaged for microstructural analysis using optical microscopy, scanning electron microscopy and transmission electron microscopy. This information substantially improves the CCT diagram.
  • Item
    Failure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining
    (Amsterdam [u.a.] : Elsevier, 2021) Elahi, Amne; Koch, Marcus; Bardon, Julien; Addiego, Frédéric; Plapper, Peter
    The development of strong metal to polymer assemblies is currently an important research subject thanks to its prominence to develop lightweight structures. Furthermore, laser welding is known to be a fast, reliable, and versatile joining process, and it was demonstrated recently that it can be applied to such metal to polymer systems. To enhance the mechanical properties of the laser-joined aluminum-polyamide (Al-PA) specimens, laser polishing and laser ablation processes have been implemented on the aluminum surface before joining. The polyamide surface was also treated with the laser beam, separately. The surfaces were tested by several characterization techniques before and after each surface treatment. Then aluminum and polyamide samples with different surface treatments have been joined with an identical laser joining process. The mechanical properties of the joints in single lap shear configuration are reported and the failure mechanisms are discussed based on micro-computed x-ray tomography imaging of joined specimens and microscopic analysis before failure. Results show that both surface treatments of aluminum significantly improve the shear load of the joint; however, with different failure mechanisms. Polyamide surface treatment and increasing degree of crystallinity are effective when combined with the laser polishing of the Al surface. This combination is responsible for further enhancement of the shear load of the joint to the limit of base metal strength which is approximately 60 % improvement compared to the untreated samples. Finally, energy dispersive X-ray mapping shows the physicochemical bonding between aluminum oxide and polyamide at the interface.
  • Item
    Energy Flux Characterisation of Atmospheric Pressure Plasma Spray Torches with Passive Thermal Probes
    (Boston, Mass. : Springer, 2022) Reck, Kristian A.; Hansen, Luka; Stummer, Maximilian; Kewitz, Thorben; Testrich, Holger; Hinterer, Andreas; Foest, Rüdiger; Kersten, Holger
    Passive thermal probes were applied on two different plasma spraying devices to gain a detailed understanding of the energy flux towards the substrate under atmospheric pressure. The challenge of very high thermal load was solved by using an advanced time-resolved measuring and evaluation technique. The combination with a controlled movement of the jets allowed to obtain insightful radial profiles. The energy flux to the substrate changes linearly to the electrical input power. When adding diatomic gases (H2/N2) to the gas mixture the energy flux increases significantly, suggesting a more efficient energy transport. For increasing the axial distance, the energy flux shows a quadratic reduction. The obtained radial profiles are exemplarily utilized to show the inhomogeneous effect of powder injection on the energy flux distribution.
  • Item
    Adhesion of a cylindrical punch with elastic properties that vary radially
    (Amsterdam [u.a.] : Elsevier, 2023) Kossa, Attila; Hensel, René; McMeeking, Robert M.
    The adhesion of a rigid substrate and an adhered straight cylindrical punch with a non-homogeneous elastic modulus is analyzed. The stress distributions are obtained along the interface for various elastic modulus gradients. The calculations are performed in the commercial finite element software Abaqus using a user material (UMAT) subroutine to control the dependence of Young's modulus on the radial position. The UMAT code is shared in the paper. The results reveal that the decreasing elastic modulus toward the perimeter of the punch can be used to significantly reduce the normal stress magnitudes in the singularity domain, which leads to stronger adhesion. The increase in the adhesion strength is characterized numerically. The effect of Poisson's ratio is also analyzed.
  • Item
    A Design Strategy for Mushroom-Shaped Microfibrils With Optimized Dry Adhesion: Experiments and Finite Element Analyses
    (New York, NY : ASME, 2021) Zhang, Xuan; Wang, Yue; Hensel, René; Arzt, Eduard
    Enhanced dry adhesion of micropatterned polymeric surfaces has been frequently demonstrated. Among the design parameters, the cap geometry plays an important role to improve their performance. In this study, we combined experiments on single polyurethane mushroom-shaped fibrils (with a stalk diameter of 80 µm and height of 125 µm) against flat glass, with numerical simulations implementing a cohesive zone. We found that the geometry of the mushroom cap strongly affects the interfacial crack behavior and the pull-off stress. The experimental and numerical results suggest that optimal adhesion was accompanied by the appearance of both edge and interior interfacial cracks during separation. Finite elemental analyses revealed the evolution of the interfacial stress distributions as a function of the cap thickness and confirmed the distinct detachment mechanisms. Furthermore, the effect of the stalk diameter and the Young's modulus on the adhesive force was established, resulting in an optimal design for mushroom-shaped fibrils.