Search Results

Now showing 1 - 10 of 29
  • Item
    Options for optimizing the drying process and reducing dry matter losses in whole-tree storage of poplar from short-rotation coppices in Germany
    (Basel : MDPI, 2020) Pecenka, Ralf; Lenz, Hannes; Hering, Thomas
    For sustainable production of wood in short-rotation coppices and agroforestry systems, it is necessary to optimize the storage processes to achieve low dry matter losses together with low-cost drying. The harvesting of the trees can be carried out very efficiently with modified forage harvesters or tractor-powered mower-chippers. The wood chips produced can be dried naturally at low cost in open-air piles. However, this type of storage is connected with high dry matter losses of up to about one fourth in the course of seven-month storage. Although harvesting whole trees is connected with significantly higher costs, lower dry matter losses are to be expected from storing the trees in piles. Consequently, in this study, the storage and drying behavior of poplar under different German weather conditions and depending on the structure of the storage piles has been examined in detail. After a seven-months storage period, the trees still displayed moisture contents of 41–44% following an initial moisture content of 56% but achieved very low dry matter losses of only 4–7%. Moisture contents of 35–39% could only be achieved in October after a further two-months drying period under favorable weather conditions. All storage piles were built up on approximately 30 cm high support timbers for better ventilation. Additionally, covering the ground with a fleece did not have any influence on the drying behavior, nor did different pile heights. Smaller tree trunk diameters are not only connected with a higher share of bark or ash, but also thinner trunks tend to become damp again more quickly after rainfall. That is why whole-tree storage is suitable above all for medium or longer rotation periods with which, under favorable conditions, the higher harvesting costs can be compensated by a higher wood chip quality and lower storage losses.
  • Item
    Analysis of Olive Grove Destruction by Xylella fastidiosa Bacterium on the Land Surface Temperature in Salento Detected Using Satellite Images
    (Basel : MDPI, 2021-9-16) Semeraro, Teodoro; Buccolieri, Riccardo; Vergine, Marzia; De Bellis, Luigi; Luvisi, Andrea; Emmanuel, Rohinton; Marwan, Norbert
    Agricultural activity replaces natural vegetation with cultivated land and it is a major cause of local and global climate change. Highly specialized agricultural production leads to extensive monoculture farming with a low biodiversity that may cause low landscape resilience. This is the case on the Salento peninsula, in the Apulia Region of Italy, where the Xylella fastidiosa bacterium has caused the mass destruction of olive trees, many of them in monumental groves. The historical land cover that characterized the landscape is currently in a transition phase and can strongly affect climate conditions. This study aims to analyze how the destruction of olive groves by X. fastidiosa affects local climate change. Land surface temperature (LST) data detected by Landsat 8 and MODIS satellites are used as a proxies for microclimate mitigation ecosystem services linked to the evolution of the land cover. Moreover, recurrence quantification analysis was applied to the study of LST evolution. The results showed that olive groves are the least capable forest type for mitigating LST, but they are more capable than farmland, above all in the summer when the air temperature is the highest. The differences in the average LST from 2014 to 2020 between olive groves and farmland ranges from 2.8 °C to 0.8 °C. Furthermore, the recurrence analysis showed that X. fastidiosa was rapidly changing the LST of the olive groves into values to those of farmland, with a difference in LST reduced to less than a third from the time when the bacterium was identified in Apulia six years ago. The change generated by X. fastidiosa started in 2009 and showed more or less constant behavior after 2010 without substantial variation; therefore, this can serve as the index of a static situation, which can indicate non-recovery or non-transformation of the dying olive groves. Failure to restore the initial environmental conditions can be connected with the slow progress of the uprooting and replacing infected plants, probably due to attempts to save the historic aspect of the landscape by looking for solutions that avoid uprooting the diseased plants. This suggests that social-ecological systems have to be more responsive to phytosanitary epidemics and adapt to ecological processes, which cannot always be easily controlled, to produce more resilient landscapes and avoid unwanted transformations.
  • Item
    Establishment of a Laboratory Scale Set-Up with Controlled Temperature and High Humidity to Investigate Dry Matter Losses of Wood Chips from Poplar during Storage
    (Basel : MDPI, 2022) Hernandez-Estrada, Albert; Pecenka, Ralf; Dumfort, Sabrina; Ascher-Jenull, Judith; Lenz, Hannes; Idler, Christine; Hoffmann, Thomas
    The aim of this work was to improve the understanding of dry matter losses (DML) that occur in wood chips during the initial phase of storage in outdoor piles. For this purpose, a laboratory scale storage chamber was developed and investigated regarding its ability to recreate the conditions that chips undergo during the initial phase of outdoor storage. Three trials with poplar Max-4 (Populus maximowiczii Henry  Populus nigra L.) chips were performed for 6–10 weeks in the storage chamber under controlled temperature and assisted humidity. Two different setups were investigated to maintain a high relative humidity (RH) inside the storage chamber; one using water containers, and one assisted with a humidifier. Moisture content (MC) and DML of the chips were measured at different storage times to evaluate their storage behaviour in the chamber. Additionally, microbiological analyses of the culturable fraction of saproxylic microbiota were performed, with a focus on mesophilic fungi, but discriminating also xerophilic fungi, and mesophilic bacteria, with focus on actinobacteria, in two trials, to gain a view on the poplar wood chip-inhabiting microorganisms as a function of storage conditions (moisture, temperature) and time. Results show that DML up to 8.8–13.7% occurred in the chips within 6–10 storage weeks. The maximum DML were reached in the trial using the humidifier, which seemed a suitable technique to keep a high RH in the testing chamber, and thus, to analyse the wood chips in conditions comparable to those in outdoor piles during the initial storage phase.
  • Item
    Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs
    (Basel : MDPI, 2023) Gwenzi, Willis; Simbanegavi, Tinoziva T.; Rzymski, Piotr
    Pharmaceuticals are widely used in Africa due to the high burden of human and animal diseases. However, a review of the current practices and pollution risks arising from the disposal of pharmaceuticals in low-income settings in Africa is still lacking. Therefore, the present review examined the literature to address the following questions: (1) what are the key factors driving the accumulation of unused and expired pharmaceuticals?, (2) what are the current disposal practices for unused and expired pharmaceuticals, and wastewater (feces and urine) containing excreted pharmaceuticals?, (3) what are the potential environmental and human health hazards posed by current disposal practices?, and (4) what are the key research needs on the disposal of pharmaceuticals in low-income settings? Evidence shows that, in low-income settings, wastewater comprising predominantly of feces and urine containing excreted pharmaceuticals often end up in on-site sanitation systems such as pit latrines, septic tanks, and the environment in the case of open defecation. Unused and expired pharmaceuticals are disposed of in pit latrines, household solid waste, and/or burned. The pollution risks of current disposal practices are poorly understood, but pharmaceutical pollution of groundwater sources, including those used for drinking water supply, may occur via strong hydrological connectivity between pit latrines and groundwater systems. Potential high-risk pollution and human exposure hotspots are discussed. However, compared to other environmental compartments, the occurrence, dissemination, fate, and human health risks of pharmaceuticals in the pit latrine-groundwater continuum are still understudied. Future research directions are discussed to address these gaps using the Source-Pathway-Receptor-Impact-Mitigation (SPRIM) continuum as an organizing framework.
  • Item
    Sand/Polyethyleneimine Composites with Enhanced Sorption/Desorption Properties toward Pollutants
    (Basel : MDPI, 2022) Bucatariu, Florin; Petrila, Larisa-Maria; Zaharia, Marius-Mihai; Simon, Frank; Mihai, Marcela
    The direct deposition of polyethyleneimine (PEI), a weak polycation with a large content of amino groups, onto sand fractions with different sizes (F70, F100, F200, and F355), resulted in versatile core-shell sorbents for water cleaning. Herein, PEI and the weak polyanion poly(acrylic acid) (PAA) were directly precipitated as an nonstoichiometric polyelectrolyte complex ([PEI]:[PAA] = 2:1) onto a sand surface followed by cross-linking with glutaraldehyde (GA) at three molar ratios ([CHO]:[amine] = 1:10; 1:5; 1:1 = r). Non-crosslinked polyelectrolyte chains were washed out in strongly basic (pH 14) and acidic (pH 0) media. The sand/PEI-GA composites were evaluated to determine the organic shell stability using swelling experiments and X-ray photoelectron spectroscopy. The sorbed/desorbed amount of two model pollutants (copper ions and bromocresol green) in column experiments depended on the sand fraction size and cross-linking degree of the PEI shell. The maximum recorded values, after five loading/release cycles of pollutant species onto F70/PEI-GAr, F100/PEI-GAr, F200/PEI-GAr, and F355/PEI-GAr, were situated between the 0.7–5.5 mg Cu2+/mL column and 3.7–15 mg BCG/mL column. Sand/PEI-GAr composites could act as promising sorbents, low-cost and eco-friendly, which could be applied for water purification procedures.
  • Item
    Effect of 1-Methyl Cyclopropane and Modified Atmosphere Packaging on the Storage of Okra (Abelmoschus esculentus L.) : Theory and Experiments
    (Basel : MDPI, 2020) Kanwal, Rabia; Ashraf, Hadeed; Sultan, Muhammad; Babu, Irrum; Yasmin, Zarina; Nadeem, Muhammad; Asghar, Muhammad; Shamshiri, Redmond R.; Ibrahim, Sobhy M.; Ahmad, Nisar; Imran, Muhammad A.; Zhou, Yuguang; Ahmad, Riaz
    Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.
  • Item
    Machine Learning for Determining Interactions between Air Pollutants and Environmental Parameters in Three Cities of Iran
    (Basel : MDPI, 2022) Rad, Abdullah Kaviani; Shamshiri, Redmond R.; Naghipour, Armin; Razmi, Seraj-Odeen; Shariati, Mohsen; Golkar, Foroogh; Balasundram, Siva K.
    Air pollution, as one of the most significant environmental challenges, has adversely affected the global economy, human health, and ecosystems. Consequently, comprehensive research is being conducted to provide solutions to air quality management. Recently, it has been demonstrated that environmental parameters, including temperature, relative humidity, wind speed, air pressure, and vegetation, interact with air pollutants, such as particulate matter (PM), NO2, SO2, O3, and CO, contributing to frameworks for forecasting air quality. The objective of the present study is to explore these interactions in three Iranian metropolises of Tehran, Tabriz, and Shiraz from 2015 to 2019 and develop a machine learning-based model to predict daily air pollution. Three distinct assessment criteria were used to assess the proposed XGBoost model, including R squared (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Preliminary results showed that although air pollutants were significantly associated with meteorological factors and vegetation, the formulated model had low accuracy in predicting (R2PM2.5 = 0.36, R2PM10 = 0.27, R2NO2 = 0.46, R2SO2 = 0.41, R2O3 = 0.52, and R2CO = 0.38). Accordingly, future studies should consider more variables, including emission data from manufactories and traffic, as well as sunlight and wind direction. It is also suggested that strategies be applied to minimize the lack of observational data by considering second-and third-order interactions between parameters, increasing the number of simultaneous air pollution and meteorological monitoring stations, as well as hybrid machine learning models based on proximal and satellite data.
  • Item
    Supportive Business Environments to Develop Grass Bioeconomy in Europe
    (Basel : MDPI, 2021) Orozco, Richard; Mosquera-Losada, María Rosa; Rodriguez, Javier; Adamseged, Muluken Elias; Grundmann, Philipp
    Grasslands cover almost half of the total European agricultural area and are the source of a wide range of public goods and services. Yet, their potential to produce innovative bio-based products, such as paper and plastic, remains widely untapped. We employ a multiple case study approach and implement the Business Environment Framework by Adamseged and Grundmann (2020) on eighteen alternative grass-based businesses to investigate the interdependencies between these successful business models and their business environments. The subsequent analysis reveals that the deployment of funds and policies to support alternative grass-based products remains low in most regions of Europe. Our findings highlight that aligned funding mechanisms that incorporate and promote the specific benefits generated by grass-producing and grass-processing businesses are key to overcoming the barriers related to the competition of bio-based products with the established fossil-fuels-based economic system. To make alternative grass-based markets more dynamic, increasing consumer awareness through adequate marketing is perceived as an important aspect. Capacity building and alignment efforts need to be strengthened and coordinated at local and higher levels to enable the replication and scale-up of novel grass-based businesses in Europe and beyond.
  • Item
    Development of Biorefineries in the Bioeconomy: A Fuzzy-Set Qualitative Comparative Analysis among European Countries
    (Basel : MDPI, 2021) Ding, Zhengqiu; Grundmann, Philipp
    This study aims to identify the configurational conditions that characterize the establish-ment of biorefineries in 20 European countries. After determining the conditions which support a bioeconomy transition, secondary data from national sources are used to represent their existing conditions within respective countries. Then, a fuzzy-set qualitative comparative analysis is em-ployed to compare and contrast the effect of varying combinations of the selected conditions on the development of biorefineries. The conditions chosen include coherent bioeconomy strategies, network intensity of regional bioclusters, intellectual capital, and natural resource availability. Our results reveal that the configuration of a coherent bioeconomy strategy, sizable public spending on R&D, abundant biomass supply, and a high level of network intensity is sufficient to explain the pro-nounced biorefineries development among some European countries. We recommend that countries with fragmented approaches review and redesign the policy and regulatory framework to create a holistic and consistent bioeconomy strategy, taking into account the configurations of conditions as an important prerequisite. In particular, factors such as the lack of best practice examples, the low level of public spending on research and development, the economic capacities for a skilled workforce in addition to the sustainable supply of raw materials should be addressed as focal points.
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.