Search Results

Now showing 1 - 2 of 2
  • Item
    Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs
    (Basel : MDPI, 2023) Gwenzi, Willis; Simbanegavi, Tinoziva T.; Rzymski, Piotr
    Pharmaceuticals are widely used in Africa due to the high burden of human and animal diseases. However, a review of the current practices and pollution risks arising from the disposal of pharmaceuticals in low-income settings in Africa is still lacking. Therefore, the present review examined the literature to address the following questions: (1) what are the key factors driving the accumulation of unused and expired pharmaceuticals?, (2) what are the current disposal practices for unused and expired pharmaceuticals, and wastewater (feces and urine) containing excreted pharmaceuticals?, (3) what are the potential environmental and human health hazards posed by current disposal practices?, and (4) what are the key research needs on the disposal of pharmaceuticals in low-income settings? Evidence shows that, in low-income settings, wastewater comprising predominantly of feces and urine containing excreted pharmaceuticals often end up in on-site sanitation systems such as pit latrines, septic tanks, and the environment in the case of open defecation. Unused and expired pharmaceuticals are disposed of in pit latrines, household solid waste, and/or burned. The pollution risks of current disposal practices are poorly understood, but pharmaceutical pollution of groundwater sources, including those used for drinking water supply, may occur via strong hydrological connectivity between pit latrines and groundwater systems. Potential high-risk pollution and human exposure hotspots are discussed. However, compared to other environmental compartments, the occurrence, dissemination, fate, and human health risks of pharmaceuticals in the pit latrine-groundwater continuum are still understudied. Future research directions are discussed to address these gaps using the Source-Pathway-Receptor-Impact-Mitigation (SPRIM) continuum as an organizing framework.
  • Item
    Closing Blank Spots and Illuminating Blind Spots in Research on Emerging Contaminants: The Source–Pathway–Receptor–Impact–Mitigation (SPRIM) Continuum as an Organizing Framework
    (Basel : MDPI, 2023) Gwenzi, Willis
    Emerging contaminants (ECs) include: (1) high-technology rare earth elements, (2) nanomaterials, (3) antibiotic/antimicrobial resistance, (4) microplastics, and (5) synthetic organic chemicals, which are currently unregulated. ECs continue to attract considerable research and public attention due to their potential human and ecological health risks. However, an organizing conceptual framework for framing research on ECs is currently missing. Lacking a conceptual framework, only a few aspects are frequently well-studied (i.e., bandwagon/Matthew effect), while other equally important topics receive only cursory attention. In this Editorial perspective, the Source–Pathway–Receptor–Impact–Mitigation (SPRIM) continuum is proposed as an organizing framework to guide research on ECs. First, a description of the SPRIM continuum and its components is presented. Compared to the prevailing and seemingly ad hoc approach predominant in research on emerging contaminants, the potential novelty of applying the proposed SPRIM continuum framework is that it addresses the bandwagon, or Matthew, effect. As a decision-support tool, the SPRIM continuum framework serves a dual function as (1) a checklist to identify key knowledge gaps and frame future research, and (2) a primer for promoting the collaborative research and application of emerging big data analytics in research on emerging contaminants. Collectively, it is envisaged that the SPRIM continuum framework will provide a comprehensive and balanced understanding of various aspects of emerging contaminants relative to the current approach. The challenges of the SPRIM continuum framework as a framing and decision-support tool are also discussed. Future research directions on ECs are discussed in light of the SPRIM continuum concept. This Editorial closes with concluding remarks and a look ahead. The issues discussed are cross-cutting or generic, and thus relate to several groups of ECs, including emerging organic contaminants (EOCs), which are the focus of the current Special Issue. This Special Issue, entitled ‘Emerging Organic Contaminants in Aquatic Systems: A Focus on the Source–Pathway–Receptor–Impact–Mitigation Continuum’, calls for high-quality contributions addressing several aspects of EOCs in aquatic systems. As a Guest Editor, I welcome and look forward to several high-quality contributions addressing at least one component or the entire spectrum of the SPRIM continuum.