Search Results

Now showing 1 - 4 of 4
  • Item
    Powers of 10: seeking ‘sweet spots’ for rapid climate and sustainability actions between individual and global scales
    (Bristol : IOP Publ., 2020) Bhowmik, Avit K.; McCaffrey, Mark S.; Ruskey, Abigail M.; Frischmann, Chad; Gaffney, Owen
    Achieving the goals of the Paris Agreement and related sustainability initiatives will require halving of global greenhouse gas emissions each decade from now on through to 2050, when net zero emissions should be achieved. To reach such significant reductions requires a rapid and strategic scaling of existing and emerging technologies and practices, coupled with economic and social transformations and novel governance solutions. Here we present a new ‘Powers of 10’ (P10) logarithmic framework and demonstrate its potential as a practical tool for decision makers and change agents at multiple scales to inform and catalyze engagement and actions, complementing and adding nuance to existing frameworks. P10 assists in identifying the suitable cohorts and cohort ranges for rapidly deploying climate and sustainability actions between a single individual and the globally projected ∼ 10 billion persons by 2050. Applying a robust dataset of climate solutions from Project Drawdown’s Plausible scenario that could cumulatively reduce greenhouse gas emissions by 1051 gigatons (Gt) against a reference scenario (2190 Gt) between 2020 and 2050, we seek to identify a ‘sweet spot’ where these climate and sustainability actions are suitably scaled. We suggest that prioritizing the analyzed climate actions between community and urban scales, where global and local converge, can help catalyze and enhance individual, household and local practices, and support national and international policies and finances for rapid sustainability transformations.
  • Item
    The meso scale as a frontier in interdisciplinary modeling of sustainability from local to global scales
    (Bristol : IOP Publ., 2023) Johnson, Justin Andrew; Brown, Molly E.; Corong, Erwin; Dietrich, Jan Philipp; C. Henry, Roslyn; Jeetze, Patrick José von; Leclère, David; Popp, Alexander; Thakrar, Sumil K.; Williams, David R.
    Achieving sustainable development requires understanding how human behavior and the environment interact across spatial scales. In particular, knowing how to manage tradeoffs between the environment and the economy, or between one spatial scale and another, necessitates a modeling approach that allows these different components to interact. Existing integrated local and global analyses provide key insights, but often fail to capture ‘meso-scale’ phenomena that operate at scales between the local and the global, leading to erroneous predictions and a constrained scope of analysis. Meso-scale phenomena are difficult to model because of their complexity and computational challenges, where adding additional scales can increase model run-time exponentially. These additions, however, are necessary to make models that include sufficient detail for policy-makers to assess tradeoffs. Here, we synthesize research that explicitly includes meso-scale phenomena and assess where further efforts might be fruitful in improving our predictions and expanding the scope of questions that sustainability science can answer. We emphasize five categories of models relevant to sustainability science, including biophysical models, integrated assessment models, land-use change models, earth-economy models and spatial downscaling models. We outline the technical and methodological challenges present in these areas of research and discuss seven directions for future research that will improve coverage of meso-scale effects. Additionally, we provide a specific worked example that shows the challenges present, and possible solutions, for modeling meso-scale phenomena in integrated earth-economy models.
  • Item
    The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe
    (Bristol : IOP Publ., 2021-6-15) Jaccard, Ingram S; Pichler, Peter-Paul; Többen, Johannes; Weisz, Helga
    The call for a decent life for all within planetary limits poses a dual challenge: provide all people with the essential resources needed to live well and, collectively, not exceed the source and sink capacity of the biosphere to sustain human societies. We examine the corridor of possible distributions of household energy and carbon footprints that satisfy both minimum energy use for a decent life and available energy supply compatible with the 1.5 °C target in 2050. We estimated household energy and carbon footprints for expenditure deciles for 28 European countries in 2015 by combining data from national household budget surveys with the environmentally-extended multi-regional input–output model EXIOBASE. We found a top-to-bottom decile ratio (90:10) of 7.2 for expenditure, 3.1 for net energy and 2.6 for carbon. The lower inequality of energy and carbon footprints is largely attributable to inefficient energy and heating technologies in the lower deciles (mostly Eastern Europe). Adopting best technology across Europe would save 11 EJ of net energy annually, but increase environmental footprint inequality. With such inequality, both targets can only be met through the use of CCS, large efficiency improvements, and an extremely low minimum final energy use of 28 GJ per adult equivalent. Assuming a more realistic minimum energy use of about 55 GJ ae−1 and no CCS deployment, the 1.5 °C target can only be achieved at near full equality. We conclude that achieving both stated goals is an immense and widely underestimated challenge, the successful management of which requires far greater room for maneuver in monetary and fiscal terms than is reflected in the current European political discourse.
  • Item
    Integrate health into decision-making to foster climate action
    (Bristol : IOP Publ., 2021-4-8) Vandyck, Toon; Rauner, Sebastian; Sampedro, Jon; Lanzi, Elisa; Reis, Lara Aleluia; Springmann, Marco; Dingenen, Rita Van
    The COVID-19 pandemic reveals that societies place a high value on healthy lives. Leveraging this momentum to establish a more central role for human health in the policy process will provide further impetus to a sustainable transformation of energy and food systems.