Search Results

Now showing 1 - 10 of 125
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Household Disposal of Pharmaceuticals in Low-Income Settings: Practices, Health Hazards, and Research Needs
    (Basel : MDPI, 2023) Gwenzi, Willis; Simbanegavi, Tinoziva T.; Rzymski, Piotr
    Pharmaceuticals are widely used in Africa due to the high burden of human and animal diseases. However, a review of the current practices and pollution risks arising from the disposal of pharmaceuticals in low-income settings in Africa is still lacking. Therefore, the present review examined the literature to address the following questions: (1) what are the key factors driving the accumulation of unused and expired pharmaceuticals?, (2) what are the current disposal practices for unused and expired pharmaceuticals, and wastewater (feces and urine) containing excreted pharmaceuticals?, (3) what are the potential environmental and human health hazards posed by current disposal practices?, and (4) what are the key research needs on the disposal of pharmaceuticals in low-income settings? Evidence shows that, in low-income settings, wastewater comprising predominantly of feces and urine containing excreted pharmaceuticals often end up in on-site sanitation systems such as pit latrines, septic tanks, and the environment in the case of open defecation. Unused and expired pharmaceuticals are disposed of in pit latrines, household solid waste, and/or burned. The pollution risks of current disposal practices are poorly understood, but pharmaceutical pollution of groundwater sources, including those used for drinking water supply, may occur via strong hydrological connectivity between pit latrines and groundwater systems. Potential high-risk pollution and human exposure hotspots are discussed. However, compared to other environmental compartments, the occurrence, dissemination, fate, and human health risks of pharmaceuticals in the pit latrine-groundwater continuum are still understudied. Future research directions are discussed to address these gaps using the Source-Pathway-Receptor-Impact-Mitigation (SPRIM) continuum as an organizing framework.
  • Item
    Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems
    (Basel : MDPI, 2021) Díaz de Otálora, Xabier; del Prado, Agustín; Dragoni, Federico; Estellés, Fernando; Amon, Barbara
    Milk production in Europe is facing major challenges to ensure its economic, environmental, and social sustainability. It is essential that holistic concepts are developed to ensure the future sustainability of the sector and to assist farmers and stakeholders in making knowledge-based decisions. In this study, integrated sustainability assessment by means of whole-farm modelling is presented as a valuable approach for identifying factors and mechanisms that could be used to improve the three pillars (3Ps) of sustainability in the context of an increasing awareness of economic profitability, social well-being, and environmental impacts of dairy production systems (DPS). This work aims (i) to create an evaluation framework that enables quantitative analysis of the level of integration of 3P sustainability indicators in whole-farm models and (ii) to test this method. Therefore, an evaluation framework consisting of 35 indicators distributed across the 3Ps of sustainability was used to evaluate three whole-farm models. Overall, the models integrated at least 40% of the proposed indicators. Different results were obtained for each sustainability pillar by each evaluated model. Higher scores were obtained for the environmental pillar, followed by the economic and the social pillars. In conclusion, this evaluation framework was found to be an effective tool that allows potential users to choose among whole-farm models depending on their needs. Pathways for further model development that may be used to integrate the 3P sustainability assessment of DPS in a more complete and detailed way were identified.
  • Item
    No polarization–Expected Values of Climate Change Impacts among European Forest Professionals and Scientists
    (Basel : MDPI, 2020) Persson, Johannes; Blennow, Kristina; Gonçalves, Luísa; Borys, Alexander; Dutcă, Ioan; Hynynen, Jari; Janeczko, Emilia; Lyubenova, Mariyana; Martel, Simon; Merganic, Jan; Merganičová, Katarína; Peltoniemi, Mikko; Petr, Michal; Reboredo, Fernando H.; Vacchiano, Giorgio; Reyer, Christopher P.O.
    The role of values in climate-related decision-making is a prominent theme of climate communication research. The present study examines whether forest professionals are more driven by values than scientists are, and if this results in value polarization. A questionnaire was designed to elicit and assess the values assigned to expected effects of climate change by forest professionals and scientists working on forests and climate change in Europe. The countries involved covered a north-to-south and west-to-east gradient across Europe, representing a wide range of bio-climatic conditions and a mix of economic–social–political structures. We show that European forest professionals and scientists do not exhibit polarized expectations about the values of specific impacts of climate change on forests in their countries. In fact, few differences between forest professionals and scientists were found. However, there are interesting differences in the expected values of forest professionals with regard to climate change impacts across European countries. In Northern European countries, the aggregated values of the expected effects are more neutral than they are in Southern Europe, where they are more negative. Expectations about impacts on timber production, economic returns, and regulatory ecosystem services are mostly negative, while expectations about biodiversity and energy production are mostly positive.
  • Item
    Closing Blank Spots and Illuminating Blind Spots in Research on Emerging Contaminants: The Source–Pathway–Receptor–Impact–Mitigation (SPRIM) Continuum as an Organizing Framework
    (Basel : MDPI, 2023) Gwenzi, Willis
    Emerging contaminants (ECs) include: (1) high-technology rare earth elements, (2) nanomaterials, (3) antibiotic/antimicrobial resistance, (4) microplastics, and (5) synthetic organic chemicals, which are currently unregulated. ECs continue to attract considerable research and public attention due to their potential human and ecological health risks. However, an organizing conceptual framework for framing research on ECs is currently missing. Lacking a conceptual framework, only a few aspects are frequently well-studied (i.e., bandwagon/Matthew effect), while other equally important topics receive only cursory attention. In this Editorial perspective, the Source–Pathway–Receptor–Impact–Mitigation (SPRIM) continuum is proposed as an organizing framework to guide research on ECs. First, a description of the SPRIM continuum and its components is presented. Compared to the prevailing and seemingly ad hoc approach predominant in research on emerging contaminants, the potential novelty of applying the proposed SPRIM continuum framework is that it addresses the bandwagon, or Matthew, effect. As a decision-support tool, the SPRIM continuum framework serves a dual function as (1) a checklist to identify key knowledge gaps and frame future research, and (2) a primer for promoting the collaborative research and application of emerging big data analytics in research on emerging contaminants. Collectively, it is envisaged that the SPRIM continuum framework will provide a comprehensive and balanced understanding of various aspects of emerging contaminants relative to the current approach. The challenges of the SPRIM continuum framework as a framing and decision-support tool are also discussed. Future research directions on ECs are discussed in light of the SPRIM continuum concept. This Editorial closes with concluding remarks and a look ahead. The issues discussed are cross-cutting or generic, and thus relate to several groups of ECs, including emerging organic contaminants (EOCs), which are the focus of the current Special Issue. This Special Issue, entitled ‘Emerging Organic Contaminants in Aquatic Systems: A Focus on the Source–Pathway–Receptor–Impact–Mitigation Continuum’, calls for high-quality contributions addressing several aspects of EOCs in aquatic systems. As a Guest Editor, I welcome and look forward to several high-quality contributions addressing at least one component or the entire spectrum of the SPRIM continuum.
  • Item
    From Transfer to Knowledge Co-Production: A Transdisciplinary Research Approach to Reduce Black Carbon Emissions in Metro Manila, Philippines
    (Basel : MDPI, 2020) Tõnisson, Liina; Kunz, Yvonne; Kecorius, Simonas; Madueño, Leizel; Tamayo, Everlyn Gayle; Casanova, Dang Marviluz; Zhao, Qi; Schikowski, Tamara; Hornidge, Anna-Katharina; Wiedensohler, Alfred; Macke, Andreas
    Air pollution, which kills an estimated 7 million people every year, is one of the greatest environmental health risks of our times. Finding solutions to this threat poses challenges to practitioners and policymakers alike. Increasing awareness on the benefits of transdisciplinary research in solution-oriented sustainable development projects has led to the establishment of the research project “A Transdisciplinary Approach to Mitigate Emissions of Black Carbon” (TAME-BC). This paper introduces the TAME-BC research setup that took place with Metro Manila, Philippines, case study. The approach integrates BC measurements with technological, socio-political, and health aspects to improve the scientific state of the art, policymaking, transport sector planning, and clinical studies related to air pollution health effects. The first pillar in the setup presents an (1) air quality assessment through aerosol measurements and instrumentation, complemented by a (2) description and assessment of the current policies, technologies, and practices of the transport sector that is responsible for pollution levels in the Philippines, as well as a (3) BC exposure and associated health impacts assessment. The fourth pillar is intercrossing, fostering (4) knowledge co-creation through stakeholder involvement across scales. We argue that this transdisciplinary approach is useful for research endeavors aiming for emission mitigation in rapidly urbanizing regions beyond Metro Manila.
  • Item
    Anthropogenic Land Use Change and Adoption of Climate Smart Agriculture in Sub-Saharan Africa
    (Basel : MDPI, 2022) Tione, Sarah Ephrida; Nampanzira, Dorothy; Nalule, Gloria; Kashongwe, Olivier; Katengeza, Samson Pilanazo
    Compelling evidence in Sub-Saharan Africa (SSA) shows that Climate-Smart Agriculture (CSA) has a positive impact on agricultural productivity. However, the uptake of CSA remains low, which is related to anthropogenic, or human-related, decisions about CSA and agricultural land use. This paper assesses households’ decisions to allocate agricultural land to CSA technologies across space and over time. We use the state-contingent theory, mixed methods, and mixed data sources. While agricultural land is increasing, forest land is decreasing across countries in SSA. The results show that household decisions to use CSA and the extent of agricultural land allocation to CSA remain low with a negative trend over time in SSA. Owned land and accessing land through rental markets are positively associated with allocating land to CSA technologies, particularly where land pressure is high. Regarding adaptation, experiencing rainfall shocks is significantly associated with anthropogenic land allocation to CSA technologies. The country policy assessment further supports the need to scale up CSA practices for adaptation, food security, and mitigation. Therefore, scaling up CSA in SSA will require that agriculture-related policies promote land tenure security and land markets while promoting climate-smart farming for food security, adaptation, and mitigation.
  • Item
    Methane Emission Characteristics of Naturally Ventilated Cattle Buildings
    (Basel : MDPI AG, 2020) Hempel, Sabrina; Willink, Diliara; Janke, David; Ammon, Christian; Amon, Barbara; Amon, Thomas
    The mandate to limit global temperature rise calls for a reliable quantification of gaseous pollutant emissions as a basis for effective mitigation. Methane emissions from ruminant fermentation are of particular relevance in the context of greenhouse gas mitigation. The emission dynamics are so far insufficiently understood. We analyzed hourly methane emission data collected during contrasting seasons from two naturally ventilated dairy cattle buildings with concrete floor and performed a second order polynomial regression. We found a parabolic temperature dependence of the methane emissions irrespective of the measurement site and setup. The position of the parabola vertex varied when considering different hours of the day. The circadian rhythm of methane emissions was represented by the pattern of the fitted values of the constant term of the polynomial and could be well explained by feeding management and air flow conditions. We found barn specific emission minima at ambient temperatures around 10 °C to 15 °C. As this identified temperature optimum coincides with the welfare temperature of dairy cows, we concluded that temperature regulation of dairy cow buildings with concrete floor should be considered and further investigated as an emission mitigation measure. Our results further indicated that empirical modeling of methane emissions from the considered type of buildings with a second order polynomial for the independent variable air temperature can increase the accuracy of predicted long-term emission values for regions with pronounced seasonal temperature fluctuations
  • Item
    Sand/Polyethyleneimine Composites with Enhanced Sorption/Desorption Properties toward Pollutants
    (Basel : MDPI, 2022) Bucatariu, Florin; Petrila, Larisa-Maria; Zaharia, Marius-Mihai; Simon, Frank; Mihai, Marcela
    The direct deposition of polyethyleneimine (PEI), a weak polycation with a large content of amino groups, onto sand fractions with different sizes (F70, F100, F200, and F355), resulted in versatile core-shell sorbents for water cleaning. Herein, PEI and the weak polyanion poly(acrylic acid) (PAA) were directly precipitated as an nonstoichiometric polyelectrolyte complex ([PEI]:[PAA] = 2:1) onto a sand surface followed by cross-linking with glutaraldehyde (GA) at three molar ratios ([CHO]:[amine] = 1:10; 1:5; 1:1 = r). Non-crosslinked polyelectrolyte chains were washed out in strongly basic (pH 14) and acidic (pH 0) media. The sand/PEI-GA composites were evaluated to determine the organic shell stability using swelling experiments and X-ray photoelectron spectroscopy. The sorbed/desorbed amount of two model pollutants (copper ions and bromocresol green) in column experiments depended on the sand fraction size and cross-linking degree of the PEI shell. The maximum recorded values, after five loading/release cycles of pollutant species onto F70/PEI-GAr, F100/PEI-GAr, F200/PEI-GAr, and F355/PEI-GAr, were situated between the 0.7–5.5 mg Cu2+/mL column and 3.7–15 mg BCG/mL column. Sand/PEI-GAr composites could act as promising sorbents, low-cost and eco-friendly, which could be applied for water purification procedures.
  • Item
    Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term
    (Basel : MDPI AG, 2020) Jander, Wiebke; Wydra, Sven; Wackerbauer, Johann; Grundmann, Philipp; Piotrowski, Stephan
    Monitoring bioeconomy transitions and their effects can be considered a Herculean task, as they cannot be easily captured using current economic statistics. Distinctions are rarely made between bio-based and non-bio-based products when official data is collected. However, production along bioeconomy supply chains and its implications for sustainability require measurement and assessment to enable considered policymaking. We propose a starting point for monitoring bioeconomy transitions by suggesting an adapted framework, relevant sectors, and indicators that can be observed with existing information and data from many alternative sources, assuming that official data collection methods will not be modified soon. Economic–environmental indicators and innovation indicators are derived for the German surfactant industry based on the premise that combined economic–environmental indicators can show actual developments and trade-offs, while innovation indicators can reveal whether a bioeconomy transition is likely in a sector. Methodological challenges are discussed and low-cost; high-benefit options for further data collection are recommended.