Search Results

Now showing 1 - 3 of 3
  • Item
    Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2022) Bao, Bin; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.; Song, Yanlin; Karnaushenko, Daniil
    A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided.
  • Item
    Flexible MXene films for batteries and beyond
    (Hoboken, NJ : Wiley, 2022) Huang, Yang; Lu, Qiongqiong; Wu, Dianlun; Jiang, Yue; Liu, Zhenjie; Chen, Bin; Zhu, Minshen; Schmidt, Oliver G.
    MXenes add dozens of metallic conductors to the family of two-dimensional (2D) materials. A top-down synthesis approach removing A-layer atoms (e.g., Al, Si, and Ga) in MAX phases to produce 2D flakes attaches various surface terminations to MXenes. With these terminations, MXenes show tunable properties, promising a range of applications from energy storage devices to electronics, including sensors, transistors, and antennas. MXenes are also excellent building blocks to create flexible films used for flexible and wearable devices. This article summarizes the synthesis of MXene flakes and highlights aspects that need attention for flexible devices. Rather than listing the development of energy storage devices in detail, we focus on the main challenges of and solutions for constructing high-performance devices. Moreover, we show the applications of MXene films in electronics to call on designs to construct a complete system based on MXene with good flexibility, which consists of a power source, sensors, transistors, and wireless communications.
  • Item
    Flexible Transparent Barrier Applications of Oxide Thin Films Prepared by Photochemical Conversion at Low Temperature and Ambient Pressure
    (Lausanne : Frontiers Media, 2020) With, Patrick C.; Helmstedt, Ulrike; Prager, Lutz
    Photoconversion of metal-organic precursors to thin film metal oxides using ultraviolet (UV) radiation in oxidative atmosphere is an attractive technology because it can be applied at temperatures <80°C and at ambient pressure. Thus, it enables preparing this class of thin films in a cost-efficient manner on temperature sensitive substrates such as polymer films. In this article, various aspects of research and development in the field of photochemical thin-film fabrication, with particular focus to the application of the produced films as gas permeation barriers for the encapsulation of optoelectronic devices are reviewed. Thereby, it covers investigations on fundamental photochemically initiated reactions for precursor classes containing metal-oxygen and metal-nitrogen bonds, and emphazises the relevance of that understanding for applicative considerations like integration of the single-layer barrier films into relevant encapsulation films. Further perspectives are given concerning integration of additional functionalities like electrical conductivity to the flexible and transparent barrier films. © Copyright © 2020 With, Helmstedt and Prager.