Search Results

Now showing 1 - 10 of 53
  • Item
    Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics
    (Bristol : IOP Publ., 2023) Bianconi, Ginestra; Arenas, Alex; Biamonte, Jacob; Carr, Lincoln D; Kahng, Byungnam; Kertesz, Janos; Kurths, Jürgen; Lü, Linyuan; Masoller, Cristina; Motter, Adilson E; Perc, Matjaž; Radicchi, Filippo; Ramaswamy, Ramakrishna; Rodrigues, Francisco A; Sales-Pardo, Marta; San Miguel, Maxi; Thurner, Stefan; Yasseri, Taha
    The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each editor, this editorial consists of a series of editor perspectives and reflections on few selected themes. A comprehensive and multi-faceted view of the field of complexity science emerges. We hope and trust that this open discussion will be of inspiration for future research on complex systems.
  • Item
    Road to glory or highway to hell? Global road access and climate change mitigation
    (Bristol : IOP Publ., 2020) Wenz, Leonie; Weddige, Ulf; Jakob, Michael; Steckel, Jan Christoph
    Transportation infrastructure is considered a key factor for economic development and poverty alleviation. The United Nations have explicitly included the provision of transport infrastructure access, e.g. through all-season road access, in their Sustainable Development Goal agenda (SDGs, target 9.1). Yet, little is known about the number of people lacking access to roads worldwide, the costs of closing existing access gaps and the implications of additional roads for other sustainability concerns such as climate change mitigation (SDG-13). Here we quantify, for 250 countries and territories, the percentage of population without road access in 2 km. We find that infrastructure investments required to provide quasi-universal road access are about USD 3 trillion. We estimate that the associated cumulative CO2 emissions from construction work and additional traffic until the end of the century amount to roughly 16 Gt. Our geographically explicit global analysis provides a starting point for refined regional studies and for the quantification of further environmental and social implications of SDG-9.1.
  • Item
    Complex systems approaches for Earth system data analysis
    (Bristol : IOP Publ., 2021) Boers, Niklas; Kurths, Jürgen; Marwan, Norbert
    Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.
  • Item
    Deep decarbonisation of buildings energy services through demand and supply transformations in a 1.5°C scenario
    (Bristol : IOP Publ., 2021-5-12) Levesque, Antoine; Pietzcker, Robert C.; Baumstark, Lavinia; Luderer, Gunnar
    Buildings energy consumption is one of the most important contributors to greenhouse gas (GHG) emissions worldwide, responsible for 23% of energy-related CO2 emissions. Decarbonising the energy demand of buildings will require two types of strategies: first, an overall reduction in energy demand, which could, to some extent, be achieved at negative costs; and second through a reduction of the carbon content of energy via fuel switching and supply-side decarbonisation. This study assesses the contributions of each of these strategies for the decarbonisation of the buildings sector in line with a 1.5°C global warming. We show that in a 1.5°C scenario combining mitigation policies and a reduction of market failures in efficiency markets, 81% of the reductions in buildings emissions are achieved through the reduction of the carbon content of energy, while the remaining 19% are due to efficiency improvements which reduce energy demand by 31%. Without supply-side decarbonisation, efficiency improvements almost entirely suppress the doubling of emissions that would otherwise be expected, but fail to induce an absolute decline in emissions. Our modelling and scenarios show the impact of both climate change mitigation policies and of the alleviation of market failures pervading through energy efficiency markets. The results show that the reduction of the carbon content of energy through fuel switching and supply-side decarbonisation is of paramount importance for the decarbonisation of buildings.
  • Item
    Early retirement of power plants in climate mitigation scenarios
    (Bristol : IOP Publ., 2020) Fofrich, Robert; Tong, Dan; Calvin, Katherine; De Boer, Harmen Sytze; Emmerling, Johannes; Fricko, Oliver; Fujimori, Shinichiro; Luderer, Gunnar; Rogelj, Joeri; Davis, Steven J.
    International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
  • Item
    The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat)
    (Bristol : IOP Publ., 2020) Madeddu, Silvia; Ueckerdt, Falko; Pehl, Michaja; Peterseim, Juergen; Lord, Michael; Kumar, Karthik Ajith; Krüger, Christoph; Luderer, Gunnar
    The decarbonisation of industry is a bottleneck for the EU's 2050 target of climate neutrality. Replacing fossil fuels with low-carbon electricity is at the core of this challenge; however, the aggregate electrification potential and resulting system-wide CO2 reductions for diverse industrial processes are unknown. Here, we present the results from a comprehensive bottom-up analysis of the energy use in 11 industrial sectors (accounting for 92% of Europe's industry CO2 emissions), and estimate the technological potential for industry electrification in three stages. Seventy-eight per cent of the energy demand is electrifiable with technologies that are already established, while 99% electrification can be achieved with the addition of technologies currently under development. Such a deep electrification reduces CO2 emissions already based on the carbon intensity of today's electricity (∼300 gCO2 kWhel−1). With an increasing decarbonisation of the power sector IEA: 12 gCO2 kWhel−1 in 2050), electrification could cut CO2 emissions by 78%, and almost entirely abate the energy-related CO2 emissions, reducing the industry bottleneck to only residual process emissions. Despite its decarbonisation potential, the extent to which direct electrification will be deployed in industry remains uncertain and depends on the relative cost of electric technologies compared to other low-carbon options.
  • Item
    Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions
    (Bristol : IOP Publ., 2020) Singh, Chandrakant; Wang-Erlandsson, Lan; Fetzer, Ingo; Rockström, Johan; van der Ent, Ruud
    Climate change and deforestation have increased the risk of drought-induced forest-to-savanna transitions across the tropics and subtropics. However, the present understanding of forest-savanna transitions is generally focused on the influence of rainfall and fire regime changes, but does not take into account the adaptability of vegetation to droughts by utilizing subsoil moisture in a quantifiable metric. Using rootzone storage capacity (Sr), which is a novel metric to represent the vegetation's ability to utilize subsoil moisture storage and tree cover (TC), we analyze and quantify the occurrence of these forest-savanna transitions along transects in South America and Africa. We found forest-savanna transition thresholds to occur around a Sr of 550–750 mm for South America and 400–600 mm for Africa in the range of 30%–40% TC. Analysis of empirical and statistical patterns allowed us to classify the ecosystem's adaptability to droughts into four classes of drought coping strategies: lowly water-stressed forest (shallow roots, high TC), moderately water-stressed forest (investing in Sr, high TC), highly water-stressed forest (trade-off between investments in Sr and TC) and savanna-grassland regime (competitive rooting strategy, low TC). The insights from this study are useful for improved understanding of tropical eco-hydrological adaptation, drought coping strategies, and forest ecosystem regime shifts under future climate change.
  • Item
    Implications of non-linearities between cumulative CO2 emissions and CO2-induced warming for assessing the remaining carbon budget
    (Bristol : IOP Publ., 2020) Nicholls, Z.R.J.; Gieseke, R.; Lewis, J.; Nauels, A.; Meinshausen, M.
    To determine the remaining carbon budget, a new framework was introduced in the Intergovernmental Panel on Climate Change's Special Report on Global Warming of 1.5 °C (SR1.5). We refer to this as a 'segmented' framework because it considers the various components of the carbon budget derivation independently from one another. Whilst implementing this segmented framework, in SR1.5 the assumption was that there is a strictly linear relationship between cumulative CO2 emissions and CO2-induced warming i.e. the TCRE is constant and can be applied to a range of emissions scenarios. Here we test whether such an approach is able to replicate results from model simulations that take the climate system's internal feedbacks and non-linearities into account. Within our modelling framework, following the SR1.5's choices leads to smaller carbon budgets than using simulations with interacting climate components. For 1.5 °C and 2 °C warming targets, the differences are 50 GtCO2 (or 10%) and 260 GtCO2 (or 17%), respectively. However, by relaxing the assumption of strict linearity, we find that this difference can be reduced to around 0 GtCO2 for 1.5 °C of warming and 80 GtCO2 (or 5%) for 2.0 °C of warming (for middle of the range estimates of the carbon cycle and warming response to anthropogenic emissions). We propose an updated implementation of the segmented framework that allows for the consideration of non-linearities between cumulative CO2 emissions and CO2-induced warming.
  • Item
    All options, not silver bullets, needed to limit global warming to 1.5 °C: a scenario appraisal
    (Bristol : IOP Publ., 2021-5-25) Warszawski, Lila; Kriegler, Elmar; Lenton, Timothy M.; Gaffney, Owen; Jacob, Daniela; Klingenfeld, Daniel; Koide, Ryu; Máñez Costa, María; Messner, Dirk; Nakicenovic, Nebojsa; Schellnhuber, Hans Joachim; Schlosser, Peter; Takeuchi, Kazuhiko; Van Der Leeuw, Sander; Whiteman, Gail; Rockström, Johan
    Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15–22 Gt CO2 (16–22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039–2061 (2049–2057 interquartile range).
  • Item
    Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies
    (Bristol : IOP Publ., 2020) Schreyer, Felix; Luderer, Gunnar; Rodrigues, Renato; Pietzcker, Robert C.; Baumstark, Lavinia; Sugiyama, Masahiro; Brecha, Robert J.; Ueckerdt, Falko
    Given their historic emissions and economic capability, we analyze a leadership role for representative industrialized regions (EU, US, Japan, and Australia) in the global climate mitigation effort. Using the global integrated assessment model REMIND, we systematically compare region-specific mitigation strategies and challenges of reaching domestic net-zero carbon emissions in 2050. Embarking from different emission profiles and trends, we find that all of the regions have technological options and mitigation strategies to reach carbon neutrality by 2050. Regional characteristics are mostly related to different land availability, population density and population trends: While Japan is resource limited with respect to onshore wind and solar power and has constrained options for carbon dioxide removal (CDR), their declining population significantly decreases future energy demand. In contrast, Australia and the US benefit from abundant renewable resources, but face challenges to curb industry and transport emissions given increasing populations and high per-capita energy use. In the EU, lack of social acceptance or EU-wide cooperation might endanger the ongoing transition to a renewable-based power system. CDR technologies are necessary for all regions, as residual emissions cannot be fully avoided by 2050. For Australia and the US, in particular, CDR could reduce the required transition pace, depth and costs. At the same time, this creates the risk of a carbon lock-in, if decarbonization ambition is scaled down in anticipation of CDR technologies that fail to deliver. Our results suggest that industrialized economies can benefit from cooperation based on common themes and complementary strengths. This may include trade of electricity-based fuels and materials as well as the exchange of regional experience on technology scale-up and policy implementation.