Search Results

Now showing 1 - 9 of 9
  • Item
    Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage
    (London : Nature Publishing Group, 2020) Gizer, G.; Puszkiel, J.; Riglos, M.V.C.; Pistidda, C.; Ramallo-López, J.M.; Mizrahi, M.; Santoru, A.; Gemming, T.; Tseng, J.-C.; Klassen, T.; Dornheim, M.
    The system Mg(NH2)2 + 2LiH is considered as an interesting solid-state hydrogen storage material owing to its low thermodynamic stability of ca. 40 kJ/mol H2 and high gravimetric hydrogen capacity of 5.6 wt.%. However, high kinetic barriers lead to slow absorption/desorption rates even at relatively high temperatures (>180 °C). In this work, we investigate the effects of the addition of K-modified LixTiyOz on the absorption/desorption behaviour of the Mg(NH2)2 + 2LiH system. In comparison with the pristine Mg(NH2)2 + 2LiH, the system containing a tiny amount of nanostructured K-modified LixTiyOz shows enhanced absorption/desorption behaviour. The doped material presents a sensibly reduced (∼30 °C) desorption onset temperature, notably shorter hydrogen absorption/desorption times and reversible hydrogen capacity of about 3 wt.% H2 upon cycling. Studies on the absorption/desorption processes and micro/nanostructural characterizations of the Mg(NH2)2 + 2LiH + K-modified LixTiyOz system hint to the fact that the presence of in situ formed nanostructure K2TiO3 is the main responsible for the observed improved kinetic behaviour.
  • Item
    Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation
    (London : Nature Publishing Group, 2020) Rößler, S.; Unbehau, R.; Gemming, T.; Kruppke, B.; Wiesmann, H.-P.; Hanke, T.
    Multiphasic silica/collagen xerogels are biomaterials designed for bone regeneration. Biphasic silica/collagen xerogels (B30) and triphasic xerogels (B30H20 or B30CK20) additionally containing hydroxyapatite or calcite were demonstrated to exhibit several structural levels. On the first level, low fibrillar collagen serves as template for silica nanoparticle agglomerates. On second level, this silica-enriched matrix phase is fiber-reinforced by collagen fibrils. In case of hydroxyapatite incorporation in B30H20, resulting xerogels exhibit a hydroxyapatite-enriched phase consisting of hydroxyapatite particle agglomerates next to silica and low fibrillar collagen. Calcite in B30CK20 is incorporated as single non-agglomerated crystal into the silica/collagen matrix phase with embedded collagen fibrils. Both the structure of multiphasic xerogels and the manner of hydroxyapatite or calcite incorporation have an influence on the release of calcium from the xerogels. B30CK20 released a significantly higher amount of calcium into a calcium-free solution over a three-week period than B30H20. In calcium containing incubation media, all xerogels caused a decrease in calcium concentration as a result of their bioactivity, which was superimposed by the calcium release for B30CK20 and B30H20. Proliferation of human bone marrow stromal cells in direct contact to the materials was enhanced on B30CK20 compared to cells on both plain B30 and B30H20.
  • Item
    Increased static dielectric constant in ZnMnO and ZnCoO thin films with bound magnetic polarons
    (London : Nature Publishing Group, 2020) Vegesna, S.V.; Bhat, V.J.; Bürger, D.; Dellith, J.; Skorupa, I.; Schmidt, O.G.; Schmidt, H.
    A novel small signal equivalent circuit model is proposed in the inversion regime of metal/(ZnO, ZnMnO, and ZnCoO) semiconductor/Si3N4 insulator/p-Si semiconductor (MSIS) structures to describe the distinctive nonlinear frequency dependent capacitance (C-F) and conductance (G-F) behaviour in the frequency range from 50 Hz to 1 MHz. We modelled the fully depleted ZnO thin films to extract the static dielectric constant (εr) of ZnO, ZnMnO, and ZnCoO. The extracted enhancement of static dielectric constant in magnetic n-type conducting ZnCoO (εr ≥ 13.0) and ZnMnO (εr ≥ 25.8) in comparison to unmagnetic ZnO (εr = 8.3–9.3) is related to the electrical polarizability of donor-type bound magnetic polarons (BMP) in the several hundred GHz range (120 GHz for CdMnTe). The formation of donor-BMP is enabled in n-type conducting, magnetic ZnO by the s-d exchange interaction between the electron spin of positively charged oxygen vacancies Vo+ in the BMP center and the electron spins of substitutional Mn2+ and Co2+ ions in ZnMnO and ZnCoO, respectively. The BMP radius scales with the Bohr radius which is proportional to the static dielectric constant. Here we show how BMP overlap can be realized in magnetic n-ZnO by increasing its static dielectric constant and guide researchers in the field of transparent spintronics towards ferromagnetism in magnetic, n-ZnO.
  • Item
    Comprehensive scan for nonmagnetic Weyl semimetals with nonlinear optical response
    (London : Nature Publishing Group, 2020) Xu, Q.; Zhang, Y.; Koepernik, K.; Shi, W.; van den Brink, J.; Felser, C.; Sun, Y.
    First-principles calculations have recently been used to develop comprehensive databases of nonmagnetic topological materials that are protected by time-reversal or crystalline symmetry. However, owing to the low symmetry requirement of Weyl points, a symmetry-based approach to identifying topological states cannot be applied to Weyl semimetals (WSMs). To date, WSMs with Weyl points in arbitrary positions are absent from the well-known databases. In this work, we develop an efficient algorithm to search for Weyl points automatically and establish a database of nonmagnetic WSMs with Weyl points near the Fermi level based on the experimental non-centrosymmetric crystal structures in the Inorganic Crystal Structure Database (ICSD). In total, 46 Weyl semimetals were discovered to have nearly clean Fermi surfaces and Weyl points within 300 meV of the Fermi level. Nine of them are chiral structures which may exhibit the quantized circular photogalvanic effect. In addition, the nonlinear optical response is studied and the giant shift current is explored. Besides nonmagnetic WSMs, our powerful tools can also be used in the discovery of magnetic topological materials.
  • Item
    The Influence of Cu-Additions on the Microstructure, Mechanical and Magnetic Properties of MnAl-C Alloys
    (London : Nature Publishing Group, 2020) Jürries, F.; Freudenberger, J.; Nielsch, K.; Woodcock, T.G.
    Alloys of the form (Mn54Al44C2)100-xCux (with x = 0, 1, 2, 4 and 6) were produced by induction melting. After homogenisation and quenching, most of the alloys consist entirely of the retained ε-phase, except for x = 6, in which the κ-phase was additionally present. After subsequent annealing, the alloys with x ≤ 2 consist entirely of a Cu-doped, ferromagnetic τ-phase, whereas the alloys with x > 2 additionally contain the κ-phase. The polarisation of the alloys at an applied field of 14 T decreases with increasing Cu-content, which is attributed i) to the dilution of the magnetic moment of the τ-phase unit cell by the Cu atoms, which do not carry a magnetic moment, and ii) at higher Cu-contents, to the formation of the κ-phase, which has a much lower polarisation than the τ-phase and therefore dilutes the net polarisation of the alloys. The Curie temperature was not affected by the Cu-additions. The stress needed to die-upset the alloys with x ≤ 2 was similar to that of the undoped alloy, whereas it was much lower for x = 4 and 6, due to the presence of intergranular layers of the κ-phase. The extrinsic magnetic properties of alloys with x ≤ 2 were improved by die-upsetting, whereas decomposition of the τ-phase during processing had a deleterious effect on the magnetic properties for higher Cu-additions.
  • Item
    Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe
    (London : Nature Publishing Group, 2020) Baek, S.-H.; Ok, J.M.; Kim, J.S.; Aswartham, S.; Morozov, I.; Chareev, D.; Urata, T.; Tanigaki, K.; Tanabe, Y.; Büchner, B.; Efremov, D.V.
    The interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high-temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out 77Se nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature Tc increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature Tnem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on Tc.
  • Item
    Routes to control diffusive pathways and thermal expansion in Ti-alloys
    (London : Nature Publishing Group, 2020) Bönisch, M.; Stoica, M.; Calin, M.
    β-stabilized Ti-alloys present several unexplored and intriguing surprises in relation to orthorhombic α″ phases. Among them are (i) the diffusion-controlled formation of transitional α″iso, α″lean and α″rich phases and ii) the highly anisotropic thermal expansion of martensitic α″. Using the prototypical Ti-Nb system, we demonstrate that the thermodynamic energy landscape reveals formation pathways for the diffusional forms of α″ and may lead to a stable β-phase miscibility gap. In this way, we derive temperature-composition criteria for the occurrence of α″iso and resolve reaction sequences during thermal cycling. Moreover, we show that the thermal expansion anisotropy of martensitic α″ gives rise to directions of zero thermal strain depending on Nb content. Utilizing this knowledge, we propose processing routes to achieve null linear expansion in α″ containing Ti-alloys. These concepts are expected to be transferable to other Ti-alloys and offer new avenues for their tailoring and technological exploitation.
  • Item
    Turning charge-density waves into Cooper pairs
    (London : Nature Publishing Group, 2020) Chikina, A.; Fedorov, A.; Bhoi, D.; Voroshnin, V.; Haubold, E.; Kushnirenko, Y.; Kim, K.H.; Borisenko, S.
    The relationship between charge-density waves (CDWs) and superconductivity is a long-standing debate. Often observed as neighbors in phase diagrams, it is still unclear whether they cooperate, compete, or simply coexist. Using angle-resolved photoemission spectroscopy, we demonstrate here that by tuning the energy position of the van Hove singularity in Pd-doped 2H-TaSe2, one is able to suppress CDW and enhance superconductivity by more than an order of magnitude. We argue that it is particular fermiology of the material that is responsible for each phenomenon, thus explaining their persistent proximity as phases.
  • Item
    Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa
    (London : Nature Publishing Group, 2020) Yao, M.; Manna, K.; Yang, Q.; Fedorov, A.; Voroshnin, V.; Valentin Schwarze, B.; Hornung, J.; Chattopadhyay, S.; Sun, Z.; Guin, S.N.; Wosnitza, J.; Borrmann, H.; Shekhar, C.; Kumar, N.; Fink, J.; Sun, Y.; Felser, C.
    Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.