Search Results

Now showing 1 - 10 of 10
  • Item
    240-GHz Reflectometer-Based Dielectric Sensor With Integrated Transducers in a 130-nm SiGe BiCMOS Technology
    (New York, NY : IEEE, 2021) Wang, Defu; Eissa, Mohamed Hussein; Schmalz, Klaus; Kampfe, Thomas; Kissinger, Dietmar
    This article presents a reflectometer-based on-chip dielectric sensor with integrated transducers at 240 GHz. The chip simplifies the measurement of a vector network analyzer (VNA) to sense the incident and reflected waves by using two heterodyne mixer-based receivers with a dielectric sensing element. Radio frequency (RF) and local oscillator (LO) submillimeter waves are generated by two frequency multiplier chains, respectively. Two back-to-back identical differential side-coupled directive couplers are proposed to separate the incident and reflected signals and couple them to mixers. Both transmission line and coplanar stripline transducers are proposed and integrated with reflectometer to investigate the sensitivity of dielectric sensors. The latter leads to a larger power variation of the reflectometer by providing more sufficient operating bands for the magnitude and phase slope of S11 . The readout of the transducers upon exposure to liquids is performed by the measurement of their reflected signals using two external excitation sources. The experimental dielectric sensing is demonstrated by using binary methanol–ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board. It enables a maximum 8 dB of the power difference between the incident and reflected channels on the measurement of liquid solvents. Both chips occupy an area of 4.03 mm 2 and consume 560 mW. Along with a wide operational frequency range from 200 to 240 GHz, this simplified one-port-VNA-based on-chip device makes it feasible for the use of handle product and suitable for the submillimeter-wave dielectric spectroscopy applications.
  • Item
    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies
    (New York, NY : IEEE, 2021) Kissinger, Dietmar; Kahmen, Gerhard; Weigel, Robert
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance.
  • Item
    Ridge Gap Waveguide Based Liquid Crystal Phase Shifter
    (New York, NY : IEEE, 2020) Nickel, Matthias; Jiménez-Sáez, Alejandro; Agrawal, Prannoy; Gadallah, Ahmed; Malignaggi, Andrea; Schuster, Christian; Reese, Roland; Tesmer, Henning; Polat, Ersin; Schumacher, Peter; Jakoby, Rolf; Kissinger, Dietmar; Maune, Holger
    In this paper, the gap waveguide technology is examined for packaging liquid crystal (LC) in tunable microwave devices. For this purpose, a line based passive phase shifter is designed and implemented in a ridge gap waveguide (RGW) topology and filled with LC serving as functional material. The inherent direct current (DC) decoupling property of gap waveguides is used to utilize the waveguide surroundings as biasing electrodes for tuning the LC. The bed of nails structure of the RGW exhibits an E-field suppression of 76 dB in simulation, forming a completely shielded device. The phase shifter shows a maximum figure of merit (FoM) of 70 °/dB from 20 GHz to 30 GHz with a differential phase shift of 387° at 25 GHz. The insertion loss ranges from 3.5 dB to 5.5 dB depending on the applied biasing voltage of 0 V to 60 V. © 2013 IEEE.
  • Item
    Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz
    (New York, NY : IEEE, 2021) Schmalz, Klaus; Rothbart, Nick; Gluck, Alexandra; Eissa, Mohamed Hussein; Mausolf, Thomas; Turkmen, Esref; Yilmaz, Selahattin Berk; Hubers, Heinz-Wilhelm
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 - 256 GHz and 250 - 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules.
  • Item
    CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release
    (New York, NY : IEEE, 2020) Steglich, Patrick; Bondarenko, Siegfried; Mai, Christian; Paul, Martin; Weller, Michael G.; Mai, Andreas
    Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. © 1989-2012 IEEE.
  • Item
    A TOPSIS-Assisted Feature Selection Scheme and SOM-Based Anomaly Detection for Milling Tools Under Different Operating Conditions
    (New York, NY : IEEE, 2021) Assafo, Maryam; Langendorfer, Peter
    Anomaly detection modeled as a one-class classification is an essential task for tool condition monitoring (TCM) when only the normal data are available. To confront with the real-world settings, it is crucial to take the different operating conditions, e.g., rotation speed, into account when approaching TCM solutions. This work mainly addresses issues related to multi-operating-condition TCM models, namely the varying discriminability of sensory features with different operating conditions; the overlap between normal and anomalous data; and the complex structure of input data. A feature selection scheme is proposed in which the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is presented as a tool to aid the multi-objective selection of sensory features. In addition, four anomaly detection approaches based on Self-Organizing Map (SOM) are studied. To examine the stability of the four approaches, they are applied on different single-operating-condition models. Further, to examine their robustness when dealing with complex data structures, they are applied on multi-operating-condition models. The experimental results using the NASA Milling Data Set showed that all the studied anomaly detection approaches achieved a higher assessment accuracy with our feature selection scheme as compared to the Principal Component Analysis (PCA), Laplacian Score (LS), and extended LS in which we added a final step to the original LS method in order to eliminate redundant features.
  • Item
    Penalties From 2D Grating Coupler Induced Polarization Crosstalk in Silicon Photonic Coherent Transceivers
    (New York, NY : IEEE, 2022) Georgieva, Galina; Sena, Matheus; Seiler, Pascal M.; Petermann, Klaus; Fischer, Johannes; Zimmermann, Lars
    Silicon photonic two-dimensional grating couplers for C- and O-band dual-polarization coherent transceivers are analyzed with respect to their polarization splitting/combining performance. Due to scattered light in the grating's plane, a linear cross-polarization results. The latter is responsible for a limited polarization split ratio and a polarizations' non-orthogonality. The impact of these two quantities is evaluated by system-level simulations with regard to OSNR penalties in coherent systems. For both C- and O-band, a design modification for reduced penalties is proposed.
  • Item
    168-195 GHz Power Amplifier with Output Power Larger Than 18 dBm in BiCMOS Technology
    (New York, NY : IEEE, 2020) Ali, Abdul; Yun, Jongwon; Giannini, Franco; Ng, Herman Jalli; Kissinger, Dietmar; Colantonio, Paolo
    This paper presents a 4-way combined G-band power amplifier (PA) fabricated with a 130-nm SiGe BiCMOS process. First, a single-ended PA based on the cascode topology (CT) is designed at 185 GHz, which consists of three stages to get an overall gain and an output power higher than 27 dB and 13 dBm, respectively. Then, a 4-way combiner/splitter was designed using low-loss transmission lines at 130-210 GHz. Finally, the combiner was loaded with four single-ended PAs to complete the design of a 4-way combined PA. The chip of the fabricated PA occupies an area of 1.35mm2. The realized PA shows a saturated output power of 18.1 dBm with a peak gain of 25.9 dB and power-added efficiency (PAE) of 3.5% at 185 GHz. A maximum output power of 18.7 dBm with PAE of 4.4% is achieved at 170 GHz. The 3-dB and 6-dB bandwidth of the PA are 27 and 42 GHz, respectively. In addition, the PA delivers a saturated output power higher than 18 dBm in the frequency range 140-186 GHz. To the best of our knowledge, the power reported in this paper is the highest for G-band SiGe BiCMOS PAs. © 2013 IEEE.
  • Item
    In-Vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Machine Learning Tools
    (New York, NY : IEEE, 2020) Zarrin, Pouya Soltani; Roeckendorf, Niels; Wenger, Christian
    Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease and a major cause of morbidity and mortality worldwide. Although a curative therapy has yet to be found, permanent monitoring of biomarkers that refiect the disease progression plays a pivotal role for the effective management of COPD. The accurate examination of respiratory tract fiuids like saliva is a promising approach for staging disease and predicting its upcoming exacerbations in a Point-of-Care (PoC) environment. However, the concurrent consideration of patients' demographic and medical parameters is necessary for achieving accurate outcomes. Therefore, Machine Learning (ML) tools can play an important role for analyzing patient data and providing comprehensive results for the recognition of COPD in a PoC setting. As a result, the objective of this research work was to implement ML tools on data acquired from characterizing saliva samples of COPD patients and healthy controls as well as their demographic information for PoC recognition of the disease. For this purpose, a permittivity biosensor was used to characterize dielectric properties of saliva samples and, subsequently, ML tools were applied on the acquired data for classification. The XGBoost gradient boosting algorithm provided a high classification accuracy and sensitivity of 91.25% and 100%, respectively, making it a promising model for COPD evaluation. Integration of this model on a neuromorphic chip, in the future, will enable the real-time assessment of COPD in PoC, with low cost, low energy consumption, and high patient privacy. In addition, constant monitoring of COPD in a near-patient setup will enable the better management of the disease exacerbations.
  • Item
    A QPSK 110-Gb/s Polarization-Diversity MIMO Wireless Link with a 220-255 GHz Tunable LO in a SiGe HBT Technology
    (New York, NY : IEEE, 2020) Rodríguez-Vázquez, Pedro; Grzyb, Janusz; Heinemann, Bernd; Pfeiffer, Ullrich R.
    In this article, a polarization-diversity technique multiple-input multiple-output (MIMO) is demonstrated to double the spectral efficiency of a line-of-sight quadrature phase-shift keying (QPSK) wireless link at 220-255 GHz with a pair of highly integrated single-chip transmitter (TX) and receiver (RX) front-end modules in 0.13-µ {m SiGe HBT technology ( fTmax=350 /550 GHz) exploiting only a low-cost wire-bonded chip-on-board packaging solution for high-speed baseband (BB) signals. Both TX and RX chips accommodate two independent fundamentally operated direct-conversion in-phase and quadrature (IQ) paths with separately tunable on-chip multiplier-based ( × 16 ) local oscillator (LO) generation paths driven from a single external highly stable 13.75-16-GHz frequency synthesizer. On the RX side, a mixer-first architecture is implemented to improve the symmetry between upper and lower sidebands (USB and LSB) at the cost of an increased noise figure (NF), whereas, on the TX chip, each upconversion mixer is followed by a gain-bandwidth (BW)-limited four-stage power amplifier (PA) to support the link budget at a meter distance. Next, two independent IQ data streams from the upconversion/downconversion paths on each chip are directed to a common lens-coupled broadband on-chip slot antenna system. This way, two orthogonal circular polarizations [left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP)] can be transmitted with sufficient isolation for link operation without the need for a high-speed depolarizer in the BB for any relative orientation between TX and RX modules. The antenna combined with a 9-mm diameter Si-lens provides a directivity of 23.5-27 dBi at 210-270 GHz for each of the modules. This, along with a peak radiated power of 7.5 dBm/ch from the TX module, and the cascaded conversion gain (CG)/single sideband (SSB) NF of 18/18 dB/ch for the RX module followed by a broadband amplifier (PSPL5882) from Tektronix allowed successful transmission of two independent QPSK data streams with an aggregate speed of 110 and 80 Gb/s over 1 and 2 m, respectively, at 230 GHz with a board-level limited channel BB bandwidth (BW) of 13.5 GHz. © 1963-2012 IEEE.