Search Results

Now showing 1 - 4 of 4
  • Item
    Towards efficient production of highly optically pure d-lactic acid from lignocellulosic hydrolysates using newly isolated lactic acid bacteria
    (New York, NY [u.a.] : Elsevier, 2022) Alexandri, Maria; Hübner, Dennis; Schneider, Roland; Fröhling, Antje; Venus, Joachim
    This study presents the production of D-lactic acid with high enantiomeric purity using lignocellulosic hydrolysates from newly isolated lactic acid bacterial (LAB) strains. Six strains, 4 heterofermentative and 2 homofermentative, were investigated for their ability to grow and produce lactic acid on sugar beet pulp (SBP) hydrolysates, containing a mixture of hexose and pentose sugars. Among the strains tested, three were isolates designated as A250, A257 and A15, all of which belonged to the genus Leuconostoc. Only strain A250 could be reliably identified as Leuconostoc pseudomesenteroides based on cluster analysis of Maldi-ToF spectra. All strains produced D-lactic acid in the presence of SBP hydrolysates, but with varying optical purities. The homofermentative strains achieved higher D-lactic acid optical purities, but without assimilating the pentose sugars. Co-cultivation of the homofermentative strain Lactobacillus coryniformis subsp. torquens DSM 20005 together with the heterofermentative isolate A250 led to the production of 21.7 g/L D-lactic acid with 99.3 % optical purity. This strategy enabled the complete sugar utilization of the substrate. Nanofiltration of the SBP hydrolysate enhanced the enantiomeric purity of the D-lactic acid produced from the isolates A250 and A15 by about 5 %. The highest D-lactic acid concentration (40 g/L) was achieved in fed-batch cultures of A250 isolate with nanofiltered SBP, where optical purity was 99.4 %. The results of this study underline the feasibility of a novel isolate as an efficient D-lactic acid producer using lignocellulosic hydrolysates.
  • Item
    Identification and molecular analysis of interaction sites in the MtSEO-F1 protein involved in forisome assembly
    (New York, NY [u.a.] : Elsevier, 2020) Rose, Judith; Visser, Franziska; Müller, Boje; Senft, Matthias; Groscurth, Sira; Sicking, Kevin F.; Twyman, Richard M.; Prüfer, Dirk; Noll, Gundula A.
    Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several “sieve element occlusion by forisome” (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains –an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)– but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly. To identify key amino acids involved in MtSEO-F1 dimerization and complex formation, we investigated protein-protein interactions by bimolecular fluorescence complementation and the analysis of yeast two-hybrid and random mutagenesis libraries. We identified a SEO-NTD core region as the major dimerization site, with abundant hydrophobic residues and rare charged residues suggesting dimerization is driven by the hydrophobic effect. We also found that ~45% of the full-length MtSEO-F1 sequence must be conserved for higher-order protein assembly, indicating that large interaction surfaces facilitate stable interactions, contributing to the high resilience of forisome bodies. Interestingly, the removal of 62 amino acids from the C-terminus did not disrupt forisome assembly. This is the first study unraveling interaction sites and mechanisms within the MtSEO-F1 protein at the level of dimerization and complex formation. © 2018
  • Item
    Trade-off for survival: Microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity
    (New York, NY [u.a.] : Elsevier, 2022) Adi Wicaksono, Wisnu; Braun, Maria; Bernhardt, Jörg; Riedel, Katharina; Cernava, Tomislav; Berg, Gabriele
    The environmental microbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native microbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.
  • Item
    The potential of calcium hydroxide to reduce storage losses: A four months monitoring study of spruce wood chip piles at industrial scale
    (New York, NY [u.a.] : Elsevier, 2021) Dumfort, Sabrina; Pecenka, Ralf; Ascher-Jenull, Judith; Peintner, Ursula; Insam, Heribert; Lenz, Hannes
    The objective of this study was to investigate the effect of an alkaline additive on the storage of wood chips from Norway spruce forest residues. Piles of untreated and calcium hydroxide treated wood chips (250 m3) were set up and investigated for four months. It was demonstrated that adding Ca(OH)2 to moist wood chips decreased the dry matter loss by 6%. This was attributed to the increase of the pH to a level of 8, rendering the habitat less suitable for fungal colonisation. The results suggest the set-up storage strategy as a potential alternative method for preserving wood chips when long term storage is required.