Search Results

Now showing 1 - 10 of 369
  • Item
    Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors
    (Weinheim : Wiley-VCH, 2020) Moreno, Silvia; Sharan, Priyanka; Engelke, Johanna; Gumz, Hannes; Boye, Susanne; Oertel, Ulrich; Wang, Peng; Banerjee, Susanta; Klajn, Rafal; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
  • Item
    Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective
    (Weinheim : Wiley-VCH, 2020) Shen, Huidong; Peppel, Tim; Strunk, Jennifer; Sun, Zhenyu
    Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    All-Conjugated Polymer Core-Shell and Core-Shell-Shell Particles with Tunable Emission Profiles and White Light Emission
    (Weinheim : Wiley-VCH, 2021) Haehnle, Bastian; Schuster, Philipp A.; Chen, Lisa; Kuehne, Alexander J. C.
    Future applications of conjugated polymer particles (CPP) in medicine, organic photonics, and optoelectronics greatly depend on high performance and precisely adjustable optical properties of the particles. To meet these criteria, current particle systems often combine conjugated polymers with inorganic particles in core-shell geometries, extending the possible optical characteristics of CPP. However, current conjugated polymer particles are restricted to a single polymer phase composed of a distinct polymer or a polymer blend. Here, a synthetic toolbox is presented that enables the synthesis of monodisperse core-shell and core-shell-shell particles, which consist entirely of conjugated polymers but of different types in the core and the shells. Seeded and fed-batch dispersion polymerizations based on Suzuki-Miyaura-type cross-coupling are investigated. The different approaches allow accurate control over the created interface between the conjugated polymer phases and thus also over the energy transfer phenomena between them. This approach opens up completely new synthetic freedom for fine tuning of the optical properties of CPP, enabling, for example, the synthesis of individual white light-emitting particles.
  • Item
    Nanostructured Silicon Matrix for Materials Engineering
    (Weinheim : Wiley-VCH, 2023) Liu, Poting; Schleusener, Alexander; Zieger, Gabriel; Bochmann, Arne; van Spronsen, Matthijs A.; Sivakov, Vladimir
    Tin-containing layers with different degrees of oxidation are uniformly distributed along the length of silicon nanowires formed by a top-down method by applying metalorganic chemical vapor deposition. The electronic and atomic structure of the obtained layers is investigated by applying nondestructive surface-sensitive X-ray absorption near edge spectroscopy using synchrotron radiation. The results demonstrated, for the first time, a distribution effect of the tin-containing phases in the nanostructured silicon matrix compared to the results obtained for planar structures at the same deposition temperatures. The amount and distribution of tin-containing phases can be effectively varied and controlled by adjusting the geometric parameters (pore diameter and length) of the initial matrix of nanostructured silicon. Due to the occurrence of intense interactions between precursor molecules and decomposition by-products in the nanocapillary, as a consequence of random thermal motion of molecules in the nanocapillary, which leads to additional kinetic energy and formation of reducing agents, resulting in effective reduction of tin-based compounds to a metallic tin state for molecules with the highest penetration depth in the nanostructured silicon matrix. This effect will enable clear control of the phase distributions of functional materials in 3D matrices for a wide range of applications.
  • Item
    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration
    (Weinheim : Wiley-VCH, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Protection Mechanism against Photocorrosion of GaN Photoanodes Provided by NiO Thin Layers
    (Weinheim : Wiley-VCH, 2020) Kamimura, Jumpei; Budde, Melanie; Bogdanoff, Peter; Tschammer, Carsten; Abdi, Fatwa F.; van de Krol, Roel; Bierwagen, Oliver; Riechert, Henning; Geelhaar, Lutz
    The photoelectrochemical properties of n-type Ga-polar GaN photoelectrodes covered with NiO layers of different thicknesses in the range 0–20 nm are investigated for aqueous solution. To obtain layers of well-defined thickness and high crystal quality, NiO is grown by plasma-assisted molecular-beam epitaxy. Stability tests reveal that the NiO layers suppress photocorrosion. With increasing NiO thickness, the onset of the photocurrent is shifted to more positive voltages and the photocurrent is reduced, especially for low bias potentials, indicating that hole transfer to the electrolyte interface is hindered by thicker NiO layers. Furthermore, cathodic transient spikes are observed under intermittent illumination, which hints at surface recombination processes. These results are inconsistent with the common explanation of the protection mechanism that the band alignment of GaN/NiO enables efficient hole-injection, thus preventing hole accumulation at the GaN surface that would lead to anodic photocorrosion. Interestingly, the morphology of the etch pits as well as further experiments involving the photodeposition of Ag indicate that photocorrosion of GaN photoanodes is related to reductive processes at threading dislocations. Therefore, it is concluded that the NiO layers block the transfer of photogenerated electrons from GaN to the electrolyte interface, which prevents the cathodic photocorrosion. © 2020 The Authors. Solar RRL published by Wiley-VCH GmbH
  • Item
    Probiomimetics - Novel Lactobacillus‐Mimicking Microparticles Show Anti‐Inflammatory and Barrier‐Protecting Effects in Gastrointestinal Models
    (Weinheim : Wiley-VCH, 2020) Kuhn, Thomas; Koch, Marcus; Fuhrmann, Gregor
    There is a lack of efficient therapies to treat increasingly prevalent autoimmune diseases, such as inflammatory bowel disease and celiac disease. Membrane vesicles (MVs) isolated from probiotic bacteria have shown tremendous potential for treating intestinal inflammatory diseases. However, possible dilution effects and rapid elimination in the gastrointestinal tract may impair their application. A cell‐free and anti‐inflammatory therapeutic system—probiomimetics—based on MVs of probiotic bacteria (Lactobacillus casei and Lactobacillus plantarum) coupled to the surface of microparticles is developed. The MVs are isolated and characterized for size and protein content. MV morphology is determined using cryoelectron microscopy and is reported for the first time in this study. MVs are nontoxic against macrophage‐like dTHP‐1 and enterocyte‐like Caco‐2 cell lines. Subsequently, the MVs are coupled onto the surface of microparticles according to facile aldehyde‐group functionalization to obtain probiomimetics. A significant reduction in proinflammatory TNF‐α level (by 86%) is observed with probiomimetics but not with native MVs. Moreover, it is demonstrated that probiomimetics have the ability to ameliorate inflammation‐induced loss of intestinal barrier function, indicating their potential for further development into an anti‐inflammatory formulation. These engineered simple probiomimetics that elicit striking anti‐inflammatory effects are a key step toward therapeutic MV translation.
  • Item
    Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tip-Enhanced Raman Spectroscopy and Force-Distance Curve Based Atomic Force Microscopy
    (Weinheim : Wiley-VCH, 2020) Höppener, Christiane; Schacher, Felix H.; Deckert, Volker
    Understanding the property-function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide an incomplete picture. Therefore, novel analytical techniques are required, which can address both chemical functionality and provide structural information at the same time with high spatial resolution. This is possible by using tip-enhanced Raman spectroscopy (TERS), but due to its limited depth information, TERS is usually restricted to investigations of the nanoparticle surface. Here, TERS experiments are established on polystyrene nanoparticles (PS NPs) after resin embedding and microtome slicing. With that, unique access to their internal morphological features is gained, and thus, enables differentiation between information obtained for core- and shell-regions. Complementary information is obtained by means of transmission electron microscopy (TEM) and from force-distance curve based atomic force microscopy (FD-AFM). This multimodal approach achieves a high degree of discrimination between the resin and the polymers used for nanoparticle formulation. The high potential of TERS combined with advanced AFM spectroscopy tools to probe the mechanical properties is applied for quality control of the resin embedding procedure.
  • Item
    Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds
    (Weinheim : Wiley-VCH, 2020) Ye, Jingjing; Weichelt, Richard; Kemper, Ulrich; Gupta, Vaibhav; König, Tobias A.F.; Eychmüller, Alexander; Seidel, Ralf
    DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.