Search Results

Now showing 1 - 10 of 35
  • Item
    Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models
    (Göttingen : Copernicus, 2021) Katzenberger, Anja; Schewe, Jacob; Pongratz, Julia; Levermann, Anders
    The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d−1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.
  • Item
    German pig farmers’ perceived agency under different nitrogen policies
    (Bristol : IOP Publishing, 2021) Stuhr, Luisa; Bodirsky, Benjamin Leon; Jaeger-Erben, Melanie; Beier, Felicitas; Hunecke, Claudia; Collignon, Quitterie; Lotze-Campen, Hermann
    Agricultural nitrogen (N) emissions represent the most substantial N source in Germany. Even though multiple policies have been introduced at the EU and German national level to reduce agriculturally sourced reactive Nitrogen (N), Germany is exceeding the target of the government's national sustainability strategy to limit N surpluses. To form a better view of the current N policy challenges, this paper seeks to identify what constrains family-managed pig farmers in Germany from adopting N-reduced farming practices. Our study applies a practice-based approach and reconstructs farmers' practice and individual perception of the possible capability to change practices (perceived agency) through problem-centred interviews. The study identifies different ideal types of farmers based on their reported farming practices and perceived agency: The first type feeling overburdened and weary of the current requirements, the second type acting based on routine and incremental improvement efforts, and the third type adapting early and inventing. However, regarding the perceived agency to adopt N-reduced farming practices our results show that all three farmer types report only low to little agency. Based on the findings, the study identifies type-specific and type-spanning constraining factors. To resolve farmers' perceived contradictions and inconsistencies which result in the unwillingness to accept further N reduction measures, we argue that policies need to address these factors. To enhance long-term paths for sustainable N-reduced farming practices, this study concludes that N policies need to shift towards outcome-oriented policies to create a collective and holistic understanding of the desired outcome while considering their embeddedness into regional and individual contexts.
  • Item
    Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
    (Göttingen : Copernicus, 2021) Pfleiderer, Peter; Jézéquel, Aglaé; Legrand, Juliette; Legrix, Natacha; Markantonis, Iason; Vignotto, Edoardo; Yiou, Pascal
    In 2016, northern France experienced an unprecedented wheat crop loss. The cause of this event is not yet fully understood, and none of the most used crop forecast models were able to predict the event (Ben-Ari et al., 2018). However, this extreme event was likely due to a sequence of particular meteorological conditions, i.e. too few cold days in late autumn–winter and abnormally high precipitation during the spring season. Here we focus on a compound meteorological hazard (warm winter and wet spring) that could lead to a crop loss. This work is motivated by the question of whether the 2016 meteorological conditions were the most extreme possible conditions under current climate, and what the worst-case meteorological scenario would be with respect to warm winters followed by wet springs. To answer these questions, instead of relying on computationally intensive climate model simulations, we use an analogue-based importance sampling algorithm that was recently introduced into this field of research (Yiou and Jézéquel, 2020). This algorithm is a modification of a stochastic weather generator (SWG) that gives more weight to trajectories with more extreme meteorological conditions (here temperature and precipitation). This approach is inspired by importance sampling of complex systems (Ragone et al., 2017). This data-driven technique constructs artificial weather events by combining daily observations in a dynamically realistic manner and in a relatively fast way. This paper explains how an SWG for extreme winter temperature and spring precipitation can be constructed in order to generate large samples of such extremes. We show that with some adjustments both types of weather events can be adequately simulated with SWGs, highlighting the wide applicability of the method. We find that the number of cold days in late autumn 2015 was close to the plausible minimum. However, our simulations of extreme spring precipitation show that considerably wetter springs than what was observed in 2016 are possible. Although the relation of crop loss in 2016 to climate variability is not yet fully understood, these results indicate that similar events with higher impacts could be possible in present-day climate conditions.
  • Item
    Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
    (Katlenburg-Lindau : Copernicus, 2022) Schlemm, Tanja; Feldmann, Johannes; Winkelmann, Ricarda; Levermann, Anders
    Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice mélange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6m within 100a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice mélange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-mélange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
    (Katlenburg-Lindau : Copernicus, 2021) Baumstark, Lavinia; Bauer, Nico; Benke, Falk; Bertram, Christoph; Bi, Stephen; Gong, Chen Chris; Dietrich, Jan Philipp; Dirnaichner, Alois; Giannousakis, Anastasis; Hilaire, Jerome; Klein, David; Koch, Johannes; Leimbach, Marian; Levesque, Antoine; Madeddu, Silvia; Malik, Aman; Merfort, Anne; Merfort, Leon; Odenweller, Adrian; Pehl, Michaja; Pietzcker, Robert C.; Piontek, Franziska; Rauner, Sebastian; Rodrigues, Renato; Rottoli, Marianna; Schreyer, Felix; Schultes, Anselm; Soergel, Bjoern; Soergel, Dominika; Strefler, Jessica; Ueckerdt, Falko; Kriegler, Elmar; Luderer, Gunnar
    This paper presents the new and now open-source version 2.1 of the REgional Model of INvestments and Development (REMIND). REMIND, as an integrated assessment model (IAM), provides an integrated view of the global energy–economy–emissions system and explores self-consistent transformation pathways. It describes a broad range of possible futures and their relation to technical and socio-economic developments as well as policy choices. REMIND is a multiregional model incorporating the economy and a detailed representation of the energy sector implemented in the General Algebraic Modeling System (GAMS). It uses non-linear optimization to derive welfare-optimal regional transformation pathways of the energy-economic system subject to climate and sustainability constraints for the time horizon from 2005 to 2100. The resulting solution corresponds to the decentralized market outcome under the assumptions of perfect foresight of agents and internalization of external effects. REMIND enables the analyses of technology options and policy approaches for climate change mitigation with particular strength in representing the scale-up of new technologies, including renewables and their integration in power markets. The REMIND code is organized into modules that gather code relevant for specific topics. Interaction between different modules is made explicit via clearly defined sets of input and output variables. Each module can be represented by different realizations, enabling flexible configuration and extension. The spatial resolution of REMIND is flexible and depends on the resolution of the input data. Thus, the framework can be used for a variety of applications in a customized form, balancing requirements for detail and overall runtime and complexity.
  • Item
    Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach
    (Göttingen : Copernicus Publ., 2020) Di Capua, Giorgia; Kretschmer, Marlene; Donner, Reik V.; van den Hurk, Bart; Vellore, Ramesh; Krishnan, Raghavan; Coumou, Dim
    The alternation of active and break phases in Indian summer monsoon (ISM) rainfall at intraseasonal timescales characterizes each ISM season. Both tropical and mid-latitude drivers influence this intraseasonal ISM variability. The circumglobal teleconnection observed in boreal summer drives intraseasonal variability across the mid-latitudes, and a two-way interaction between the ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test the ISM circumglobal teleconnection hypothesis in a causal framework. A robust causal link from the circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall is identified, and we estimate the normalized causal effect (CE) of this link to be about 0.2 (a 1 standard deviation shift in the circumglobal teleconnection causes a 0.2 standard deviation shift in the ISM rainfall 1 week later). The ISM rainfall feeds back on the circumglobal teleconnection pattern, however weakly. Moreover, we identify a negative feedback between strong updraft located over India and the Bay of Bengal and the ISM rainfall acting at a biweekly timescale, with enhanced ISM rainfall following strong updraft by 1 week. This mechanism is possibly related to the boreal summer intraseasonal oscillation. The updraft has the strongest CE of 0.5, while the Madden–Julian oscillation variability has a CE of 0.2–0.3. Our results show that most of the ISM variability on weekly timescales comes from these tropical drivers, though the mid-latitude teleconnection also exerts a substantial influence. Identifying these local and remote drivers paves the way for improved subseasonal forecasts.
  • Item
    The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation
    (Katlenburg-Lindau : Copernicus, 2022) Willeit, Matteo; Ganopolski, Andrey; Robinson, Alexander; Edwards, Neil R.
    The newly developed fast Earth system model CLIMBER-X is presented. The climate component of CLIMBER-X consists of a 2.5-D semi-empirical statistical-dynamical atmosphere model, a 3-D frictional-geostrophic ocean model, a dynamic-thermodynamic sea ice model and a land surface model. All the model components are discretized on a regular lat-long grid with a horizontal resolution of 5 ° ×5 °. The model has a throughput of ° ∼ 10 000 simulation years per day on a single node with 16 CPUs on a high-performance computer and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100000 years. A comprehensive evaluation of the model performance for the present day and the historical period shows that CLIMBER-X is capable of realistically reproducing many observed climate characteristics, with results that generally lie within the range of state-of-the-art general circulation models. The analysis of model performance is complemented by a thorough assessment of climate feedbacks and model sensitivities to changes in external forcings and boundary conditions. Limitations and applicability of the model are critically discussed. CLIMBER-X also includes a detailed representation of the global carbon cycle and is coupled to an ice sheet model, which will be described in separate papers. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
  • Item
    First process-based simulations of climate change impacts on global tea production indicate large effects in the World’s major producer countries
    (Bristol : IOP Publ., 2020) Beringer, Tim; Kulak, Michal; Müller, Christoph; Schaphoff, Sibyll; Jans, Yvonne
    Modeling of climate change impacts have mainly been focused on a small number of annual staple crops that provide most of the world's calories. Crop models typically do not represent perennial crops despite their high economic, nutritional, or cultural value. Here we assess climate change impacts on global tea production, chosen because of its high importance in culture and livelihoods of people around the world. We extended the dynamic global vegetation model with managed land, LPJmL4, global crop model to simulate the cultivation of tea plants. Simulated tea yields were validated and found in good agreement with historical observations as well as experiments on the effects of increasing CO2 concentrations. We then projected yields into the future under a range of climate scenarios from the Inter-Sectoral Impact Model Intercomparison Project. Under current irrigation levels and lowest climate change scenarios, tea yields are expected to decrease in major producing countries. In most climate scenarios, we project that tea yields are set to increase in China, India, and Vietnam. However, yield losses are expected to affect Kenya, Indonesia, and Sri Lanka. If abundant water supply and full irrigation is assumed for all tea cultivation areas, yields are projected to increase in all regions.
  • Item
    Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations
    (Katlenburg-Lindau : Copernicus Ges., 2022) Riechers, Keno; Mitsui, Takahito; Boers, Niklas; Ghil, Michael
    The relative role of external forcing and of intrinsic variability is a key question of climate variability in general and of our planet's paleoclimatic past in particular. Over the last 100 years since Milankovic's contributions, the importance of orbital forcing has been established for the period covering the last 2.6gMyr and the Quaternary glaciation cycles that took place during that time. A convincing case has also been made for the role of several internal mechanisms that are active on timescales both shorter and longer than the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing's effects on the climate system's internal variability on timescales from thousands to millions of years. This framework relies on the fairly recent theory of non-autonomous and random dynamical systems, and it has so far been successfully applied in the climate sciences for problems like the El Niño-Southern Oscillation, the oceans' wind-driven circulation, and other problems on interannual to interdecadal timescales. Finally, we provide further examples of climate applications and present preliminary results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.