Search Results

Now showing 1 - 10 of 10
  • Item
    Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
    (Katlenburg-Lindau : Copernicus, 2022) Schlemm, Tanja; Feldmann, Johannes; Winkelmann, Ricarda; Levermann, Anders
    Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice mélange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6m within 100a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice mélange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-mélange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet.
  • Item
    The tipping points and early warning indicators for Pine Island Glacier, West Antarctica
    (Katlenburg-Lindau : Copernicus, 2021-3-25) Rosier, Sebastian H. R.; Reese, Ronja; Donges, Jonathan F.; De Rydt, Jan; Gudmundsson, G. Hilmar; Winkelmann, Ricarda
    Mass loss from the Antarctic Ice Sheet is the main source of uncertainty in projections of future sea-level rise, with important implications for coastal regions worldwide. Central to ongoing and future changes is the marine ice sheet instability: once a critical threshold, or tipping point, is crossed, ice internal dynamics can drive a self-sustaining retreat committing a glacier to irreversible, rapid and substantial ice loss. This process might have already been triggered in the Amundsen Sea region, where Pine Island and Thwaites glaciers dominate the current mass loss from Antarctica, but modelling and observational techniques have not been able to establish this rigorously, leading to divergent views on the future mass loss of the West Antarctic Ice Sheet. Here, we aim at closing this knowledge gap by conducting a systematic investigation of the stability regime of Pine Island Glacier. To this end we show that early warning indicators in model simulations robustly detect the onset of the marine ice sheet instability. We are thereby able to identify three distinct tipping points in response to increases in ocean-induced melt. The third and final event, triggered by an ocean warming of approximately 1.2 ∘C from the steady-state model configuration, leads to a retreat of the entire glacier that could initiate a collapse of the West Antarctic Ice Sheet.
  • Item
    Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
    (Göttingen : Copernicus Publ., 2020) Levermann, Anders; Winkelmann, Ricarda; Albrecht, Torsten; Goelzer, Heiko; Golledge, Nicholas R.; Greve, Ralf; Huybrechts, Philippe; Jordan, Jim; Leguy, Gunter; Martin, Daniel; Morlighem, Mathieu; Pattyn, Frank; Pollard, David; Quiquet, Aurelien; Rodehacke, Christian; Seroussi, Helene; Sutter, Johannes; Zhang, Tong; Van Breedam, Jonas; Calov, Reinhard; DeConto, Robert; Dumas, Christophe; Garbe, Julius; Gudmundsson, G. Hilmar; Hoffman, Matthew J.; Humbert, Angelika; Kleiner, Thomas; Lipscomb, William H.; Meinshausen, Malte; Ng, Esmond; Nowicki, Sophie M.J.; Perego, Mauro; Price, Stephen F.; Saito, Fuyuki; Schlegel, Nicole-Jeanne; Sun, Sainan; van de Wal, Roderik S.W.
    The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4mm of global sea level rise, with a standard deviation of 3.7mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 °C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles.We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade. © Author(s) 2020.
  • Item
    Implications of non-linearities between cumulative CO2 emissions and CO2-induced warming for assessing the remaining carbon budget
    (Bristol : IOP Publ., 2020) Nicholls, Z.R.J.; Gieseke, R.; Lewis, J.; Nauels, A.; Meinshausen, M.
    To determine the remaining carbon budget, a new framework was introduced in the Intergovernmental Panel on Climate Change's Special Report on Global Warming of 1.5 °C (SR1.5). We refer to this as a 'segmented' framework because it considers the various components of the carbon budget derivation independently from one another. Whilst implementing this segmented framework, in SR1.5 the assumption was that there is a strictly linear relationship between cumulative CO2 emissions and CO2-induced warming i.e. the TCRE is constant and can be applied to a range of emissions scenarios. Here we test whether such an approach is able to replicate results from model simulations that take the climate system's internal feedbacks and non-linearities into account. Within our modelling framework, following the SR1.5's choices leads to smaller carbon budgets than using simulations with interacting climate components. For 1.5 °C and 2 °C warming targets, the differences are 50 GtCO2 (or 10%) and 260 GtCO2 (or 17%), respectively. However, by relaxing the assumption of strict linearity, we find that this difference can be reduced to around 0 GtCO2 for 1.5 °C of warming and 80 GtCO2 (or 5%) for 2.0 °C of warming (for middle of the range estimates of the carbon cycle and warming response to anthropogenic emissions). We propose an updated implementation of the segmented framework that allows for the consideration of non-linearities between cumulative CO2 emissions and CO2-induced warming.
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    Attributing observed permafrost warming in the northern hemisphere to anthropogenic climate change
    (Bristol : IOP Publ., 2022) Gudmundsson, Lukas; Kirchner, Josefine; Gädeke, Anne; Noetzli, Jeannette; Biskaborn, Boris K
    Permafrost temperatures are increasing globally with the potential of adverse environmental and socio-economic impacts. Nonetheless, the attribution of observed permafrost warming to anthropogenic climate change has relied mostly on qualitative evidence. Here, we compare long permafrost temperature records from 15 boreholes in the northern hemisphere to simulated ground temperatures from Earth system models contributing to CMIP6 using a climate change detection and attribution approach. We show that neither pre-industrial climate variability nor natural drivers of climate change suffice to explain the observed warming in permafrost temperature averaged over all boreholes. However, simulations are consistent with observations if the effects of human emissions on the global climate system are considered. Moreover, our analysis reveals that the effect of anthropogenic climate change on permafrost temperature is detectable at some of the boreholes. Thus, the presented evidence supports the conclusion that anthropogenic climate change is the key driver of northern hemisphere permafrost warming.
  • Item
    Significance of uncertain phasing between the onsets of stadial–interstadial transitions in different Greenland ice core proxies
    (Katlenburg-Lindau : Copernicus Ges., 2021) Riechers, Keno; Boers, Niklas
    Different paleoclimate proxy records evidence repeated abrupt climate transitions during previous glacial intervals. These transitions are thought to comprise abrupt warming and increase in local precipitation over Greenland, sudden reorganization of the Northern Hemisphere atmospheric circulation, and retreat of sea ice in the North Atlantic. The physical mechanism underlying these so-called Dansgaard–Oeschger (DO) events remains debated. A recent analysis of Greenland ice core proxy records found that transitions in Na+ concentrations and δ18O values are delayed by about 1 decade with respect to corresponding transitions in Ca2+ concentrations and in the annual layer thickness during DO events. These delays are interpreted as a temporal lag of sea-ice retreat and Greenland warming with respect to a synoptic- and hemispheric-scale atmospheric reorganization at the onset of DO events and may thereby help constrain possible triggering mechanisms for the DO events. However, the explanatory power of these results is limited by the uncertainty of the transition onset detection in noisy proxy records. Here, we extend previous work by testing the significance of the reported lags with respect to the null hypothesis that the proposed transition order is in fact not systematically favored. If the detection uncertainties are averaged out, the temporal delays in the δ18O and Na+ transitions with respect to their counterparts in Ca2+ and the annual layer thickness are indeed pairwise statistically significant. In contrast, under rigorous propagation of uncertainty, three statistical tests cannot provide evidence against the null hypothesis. We thus confirm the previously reported tendency of delayed transitions in the δ18O and Na+ concentration records. Yet, given the uncertainties in the determination of the transition onsets, it cannot be decided whether these tendencies are truly the imprint of a prescribed transition order or whether they are due to chance. The analyzed set of DO transitions can therefore not serve as evidence for systematic lead–lag relationships between the transitions in the different proxies, which in turn limits the power of the observed tendencies to constrain possible physical causes of the DO events.
  • Item
    Taxing interacting externalities of ocean acidification, global warming, and eutrophication
    (Malden, Mass. : Wiley-Blackwell, 2021) Hänsel, Martin C.; Bergh, Jeroen C. J. M. van den
    We model a stylized economy dependent on agriculture and fisheries to study optimal environmental policy in the face of interacting external effects of ocean acidification, global warming, and eutrophication. This allows us to capture some of the latest insights from research on ocean acidification. Using a static two-sector general equilibrium model we derive optimal rules for national taxes on (Formula presented.) emissions and agricultural run-off and show how they depend on both isolated and interacting damage effects. In addition, we derive a second-best rule for a tax on agricultural run-off of fertilizers for the realistic case that effective internalization of (Formula presented.) externalities is lacking. The results contribute to a better understanding of the social costs of ocean acidification in coastal economies when there is interaction with other environmental stressors. Recommendations for Resource Managers: Marginal environmental damages from (Formula presented.) emissions should be internalized by a tax on (Formula presented.) emissions that is high enough to not only reflect marginal damages from temperature increases, but also marginal damages from ocean acidification and the interaction of both with regional sources of acidification like nutrient run-off from agriculture. In the absence of serious national policies that fully internalize externalities, a sufficiently high tax on regional nutrient run-off of fertilizers used in agricultural production can limit not only marginal environmental damages from nutrient run-off but also account for unregulated carbon emissions. Putting such regional policies in place that consider multiple important drivers of environmental change will be of particular importance for developing coastal economies that are likely to suffer the most from ocean acidification. © 2021 The Authors. Natural Resource Modeling published by Wiley Periodicals LLC.
  • Item
    Global warming due to loss of large ice masses and Arctic summer sea ice
    ([London] : Nature Publishing Group UK, 2020) Wunderling, Nico; Willeit, Matteo; Donges, Jonathan F.; Winkelmann, Ricarda
    Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the last century due to anthropogenic global warming. However, the impacts of their possible future disintegration on global mean temperature (GMT) and climate feedbacks have not yet been comprehensively evaluated. Here, we quantify this response using an Earth system model of intermediate complexity. Overall, we find a median additional global warming of 0.43 °C (interquartile range: 0.39−0.46 °C) at a CO2 concentration of 400 ppm. Most of this response (55%) is caused by albedo changes, but lapse rate together with water vapour (30%) and cloud feedbacks (15%) also contribute significantly. While a decay of the ice sheets would occur on centennial to millennial time scales, the Arctic might become ice-free during summer within the 21st century. Our findings imply an additional increase of the GMT on intermediate to long time scales.
  • Item
    “Surface,” “satellite” or “simulation”: Mapping intra-urban microclimate variability in a desert city
    (Chichester [u.a.] : Wiley, 2020) Zhou, Bin; Kaplan, Shai; Peeters, Aviva; Kloog, Itai; Erell, Evyatar
    Mapping spatial and temporal variability of urban microclimate is pivotal for an accurate estimation of the ever-increasing exposure of urbanized humanity to global warming. This particularly concerns cities in arid/semi-arid regions which cover two fifths of the global land area and are home to more than one third of the world's population. Focusing on the desert city of Be'er Sheva Israel, we investigate the spatial and temporal patterns of urban–rural and intra-urban temperature variability by means of satellite observation, vehicular traverse measurement, and computer simulation. Our study reveals a well-developed nocturnal canopy layer urban heat island in Be'er Sheva, particularly in the winter, but a weak diurnal cool island in the mid-morning. Near surface air temperature exhibits weak urban–rural and intra-urban differences during the daytime (<1°C), despite pronounced urban surface cool islands observed in satellite images. This phenomenon, also recorded in some other desert cities, is explained by the rapid increase in surface skin temperature of exposed desert soils (in the absence of vegetation or moisture) after sunrise, while urban surfaces are heated more slowly. The study highlights differences among the three methods used for describing urban temperature variability, each of which may have different applications in fields such as urban planning, climate change mitigation, and epidemiological research. © 2019 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.