Search Results

Now showing 1 - 10 of 192
  • Item
    Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia
    (Amsterdam [u.a.] : Elsevier, 2021) Rupakheti, Dipesh; Rupakheti, Maheswar; Yin, Xiufeng; Hofer, Julian; Rai, Mukesh; Hu, Yuling; Abdullaev, Sabur F.; Kang, Shichang
    The location of Central Asia, almost at the center of the global dust belt region, makes it susceptible for dust events. The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions (Tianshan, Hindu Kush-Karakoram-Himalayas, and Tibetan Plateau). In this study, we analyse and explain the modification in aerosols’ physical, optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010–2018 at the AERONET station in Dushanbe, Tajikistan. Aerosol episodes were classified as strong anthropogenic, strong dust and extreme dust. The mean aerosol optical depth (AOD) during these three types of events was observed a factor of ~3, 3.5 and 6.6, respectively, higher than the mean AOD for the period 2010–2018. The corresponding mean fine-mode fraction was 0.94, 0.20 and 0.16, respectively, clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events, whereas coarse-mode dust aerosol dominated during the other two types of events. This was corroborated by the relationships among various aerosol parameters (AOD vs. AE, and EAE vs. AAE, SSA and RRI). The mean aerosol radiative forcing (ARF) at the top of the atmosphere (ARFTOA), the bottom of the atmosphere (ARFBOA), and in the atmosphere (ARFATM) were −35 ± 7, −73 ± 16, and 38 ± 17 Wm−2 during strong anthropogenic events, −48 ± 12, −85 ± 24, and 37 ± 15 Wm−2 during strong dust event, and −68 ± 19, −117 ± 38, and 49 ± 21 Wm−2 during extreme dust events. Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5–1.6 K day−1 (strong anthropogenic events), 0.4–1.9 K day−1 (strong dust events) and 0.8–2.7 K day−1 (extreme dust events). The source regions of air masses to Dushanbe during the onset of such events are also identified. Our study contributes to the understanding of dust and anthropogenic aerosols, in particular the extreme events and their disproportionally high radiative impacts over Central Asia.
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) Tõnisson, Liina; Voigtländer, Jens; Weger, Michael; Assmann, Denise; Käthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar
    (Basel : MDPI AG, 2021) Floutsi, Athena Augusta; Baars, Holger; Radenz, Martin; Haarig, Moritz; Yin, Zhenping; Seifert, Patric; Jimenez, Cristofer; Ansmann, Albert; Engelmann, Ronny; Barja, Boris; Zamorano, Felix; Wandinger, Ulla
    In this paper, we present long-term observations of the multiwavelength Raman lidar PollyXT conducted in the framework of the DACAPO-PESO campaign. Regardless of the relatively clean atmosphere in the southern mid-latitude oceans region, we regularly observed events of long-range transported smoke, originating either from regional sources in South America or from Australia. Two case studies will be discussed, both identified as smoke events that occurred on 5 February 2019 and 11 March 2019. For the first case considered, the lofted smoke layer was located at an altitude between 1.0 and 4.2 km, and apart from the predominance of smoke particles, particle linear depolarization values indicated the presence of dust particles. Mean lidar ratio values at 355 and 532 nm were 49 ± 12 and 24 ± 18 sr respectively, while the mean particle linear depolarization was 7.6 ± 3.6% at 532 nm. The advection of smoke and dust particles above Punta Arenas affected significantly the available cloud condensation nuclei (CCN) and ice nucleating particles (INP) in the lower troposphere, and effectively triggered the ice crystal formation processes. Regarding the second case, the thin smoke layers were observed at altitudes 5.5–7.0, 9.0 and 11.0 km. The particle linear depolarization ratio at 532 nm increased rapidly with height, starting from 2% for the lowest two layers and increasing up to 9.5% for the highest layer, indicating the possible presence of non-spherical coated soot aggregates. INP activation was effectively facilitated. The long-term analysis of the one year of observations showed that tropospheric smoke advection over Punta Arenas occurred 16 times (lasting from 1 to 17 h), regularly distributed over the period and with high potential to influence cloud formation in the otherwise pristine environment of the region.
  • Item
    Preventing airborne transmission of SARS-CoV-2 in hospitals and nursing homes
    (Basel : MDPI AG, 2020) Ahlawat, Ajit; Mishra, Sumit Kumar; Birks, John W.; Costabile, Francesca; Wiedensohler, Alfred
    [No abstract available]
  • Item
    CRAAS: A European Cloud Regime dAtAset Based on the CLAAS-2.1 Climate Data Record
    (Basel : MDPI, 2022) Tzallas, Vasileios; Hünerbein, Anja; Stengel, Martin; Meirink, Jan Fokke; Benas, Nikos; Trentmann, Jörg; Macke, Andreas
    Given the important role of clouds in our planet’s climate system, it is crucial to further improve our understanding of their governing processes as well as the resulting spatio-temporal variability of their properties. This co-variability of different cloud optical properties is adequately represented through the well-established concept of cloud regimes. The focus of the present study lies on the creation of a cloud regime dataset over Europe, named “Cloud Regime dAtAset based on the CLAAS-2.1 climate data record” (CRAAS), in order to analyze their variability and their changes at different spatio-temporal scales. In addition, co-occurrences between the cloud regimes and large-scale weather patterns are investigated. The CLoud property dAtAset using Spinning Enhanced Visible and Infrared (SEVIRI) edition 2.1 (CLAAS-2.1) data record, which is produced by the Satellite Application Facility on Climate Monitoring (CM SAF), was used as the basis for the derivation of the cloud regimes over Europe for a 14-year period (2004–2017). In particular, the cloud optical thickness (COT) and cloud top pressure (CTP) products of CLAAS-2.1 were used in order to compute 2D histograms. Then, the k-means clustering algorithm was applied to the generated 2D histograms in order to derive the cloud regimes. Eight cloud regimes were identified, which, along with the geographical distribution of their frequency of occurrence, assisted in providing a detailed description of the climate of the cloud properties over Europe. The annual and diurnal variabilities of the eight cloud regimes were studied, and trends in their frequency of occurrence were also examined. Larger changes in the frequency of occurrence of the produced cloud regimes were found for a regime associated to alto- and nimbo-type clouds and for a regime connected to shallow cumulus clouds and fog (−0.65% and +0.70% for the time period of the study, respectively).
  • Item
    Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pfrommer, E.; Dreier, C.; Gabriel, G.; Dallenga, T.; Reimer, R.; Schepanski, K.; Scherließ, R.; Schaible, U.E.; Gutsmann, T.
    The tuberculosis agent Mycobacterium tuberculosis is primarily transmitted through air, but little is known about the tenacity of mycobacterium-containing aerosols derived from either suspensions or infected neutrophils. Analysis of mycobacterial aerosol particles generated from bacterial suspensions revealed an average aerodynamic diameter and mass density that may allow distant airborne transmission. The volume and mass of mycobacterial aerosol particles increased with elevated relative humidity. To more closely mimic aerosol formation that occurs in active TB patients, aerosols from mycobacterium-infected neutrophils were analysed. Mycobacterium-infected intact neutrophils showed a smaller particle size distribution and lower viability than free mycobacteria. In contrast, mycobacterium-infected necrotic neutrophils, predominant in M. tuberculosis infection, revealed particle sizes and viability rates similar to those found for free mycobacteria, but in addition, larger aggregates of viable mycobacteria were observed. Therefore, mycobacteria are shielded from environmental stresses in multibacillary aggregates generated from necrotic neutrophils, which allows improved tenacity but emphasizes short distance transmission between close contacts.
  • Item
    Increasing Resolution and Resolving Convection Improve the Simulation of Cloud-Radiative Effects Over the North Atlantic
    (Hoboken, NJ : Wiley, 2020) Senf, Fabian; Voigt, Aiko; Clerbaux, Nicolas; Hünerbein, Anja; Deneke, Hartwig
    Clouds interact with atmospheric radiation and substantially modify the Earth's energy budget. Cloud formation processes occur over a vast range of spatial and temporal scales, which make their thorough numerical representation challenging. Therefore, the impact of parameter choices for simulations of cloud-radiative effects is assessed in the current study. Numerical experiments are carried out using the ICOsahedral Nonhydrostatic (ICON) model with varying grid spacings between 2.5 and 80 km and with different subgrid-scale parameterization approaches. Simulations are performed over the North Atlantic with either one-moment or two-moment microphysics and with convection being parameterized or explicitly resolved by grid-scale dynamics. Simulated cloud-radiative effects are compared to products derived from Meteosat measurements. Furthermore, a sophisticated cloud classification algorithm is applied to understand the differences and dependencies of simulated and observed cloud-radiative effects. The cloud classification algorithm developed for the satellite observations is also applied to the simulation output based on synthetic infrared brightness temperatures, a novel approach that is not impacted by changing insolation and guarantees a consistent and fair comparison. It is found that flux biases originate equally from clear-sky and cloudy parts of the radiation field. Simulated cloud amounts and cloud-radiative effects are dominated by marine, shallow clouds, and their behavior is highly resolution dependent. Bias compensation between shortwave and longwave flux biases, seen in the coarser simulations, is significantly diminished for higher resolutions. Based on the analysis results, it is argued that cloud-microphysical and cloud-radiative properties have to be adjusted to further improve agreement with observed cloud-radiative effects. © 2020. The Authors.
  • Item
    Extended multirate infinitesimal step methods: Derivation of order conditions
    (Amsterdam [u.a.] : Elsevier B.V., 2021) Bauer, Tobias Peter; Knoth, Oswald
    Multirate methods are specially designed for problems with multiple time scales. The multirate infinitesimal step method (MIS) was developed as a generalization of the so called split-explicit Runge–Kutta methods, where the integration of the fast part is conducted analytically. The MIS method was originally evolved for applications related to numerical weather prediction, i.e. the integration of the compressible Euler equation. In this work, an extension to MIS methods will be presented where an arbitrary Runge–Kutta method (RK) is applied for the integration of the fast component. Furthermore, the order convergence from the original MIS method will be reinvestigated including the derivation of conditions up to order four. Additionally will be presented how well-known methods such as recursive flux splitting multirate method, (Schlegel et al., 2012) partitioned Runge–Kutta method, (Jackiewicz and Vermiglio, 2000) and generalized additive Runge–Kutta method, (Sandu and Günther, 2015) are related to or can be cast as an extended MIS method. An exemplary MIS method of order four with five stages will show that the convergence behaviour not only depends on the applied method for the integration of the fast component. The method will further indicate that the used fast time step plays a significant role. © 2019 The Author(s)
  • Item
    Local and Remote Controls on Arctic Mixed-Layer Evolution
    (Malden MA: Wiley-Blackwell, 2020) Neggers, R.A.J.; Chylik, J.; Egerer, U.; Griesche, H.; Schemann, V.; Seifert, P.; Siebert, H.; Macke, A.
    In this study Lagrangian large-eddy simulation of cloudy mixed layers in evolving warm air masses in the Arctic is constrained by in situ observations from the recent PASCAL field campaign. A key novelty is that time dependence is maintained in the large-scale forcings. An iterative procedure featuring large-eddy simulation on microgrids is explored to calibrate the case setup, inspired by and making use of the typically long memory of Arctic air masses for upstream conditions. The simulated mixed-phase clouds are part of a turbulent mixed layer that is weakly coupled to the surface and is occasionally capped by a shallow humidity layer. All eight simulated mixed layers exhibit a strong time evolution across a range of time scales, including diurnal but also synoptic fingerprints. A few cases experience rapid cloud collapse, coinciding with a rapid decrease in mixed-layer depth. To gain insight, composite budget analyses are performed. In the mixed-layer interior the heat and moisture budgets are dominated by turbulent transport, radiative cooling, and precipitation. However, near the thermal inversion the large-scale vertical advection also contributes significantly, showing a distinct difference between subsidence and upsidence conditions. A bulk mass budget analysis reveals that entrainment deepening behaves almost time-constantly, as long as clouds are present. In contrast, large-scale subsidence fluctuates much more strongly and can both counteract and boost boundary-layer deepening resulting from entrainment. Strong and sudden subsidence events following prolonged deepening periods are found to cause the cloud collapses, associated with a substantial reduction in the surface downward longwave radiative flux. ©2019. The Authors.
  • Item
    Detrainment Dominates CCN Concentrations Around Non-Precipitating Convective Clouds Over the Amazon
    (Hoboken, NJ : Wiley, 2022) Braga, Ramon C.; Rosenfeld, Daniel; Andreae, Meinrat O.; Pöhlker, Christopher; Pöschl, Ulrich; Voigt, Christiane; Weinzierl, Bernadett; Wendisch, Manfred; Pöhlker, Mira L.; Harrison, Daniel
    We investigated the relationship between the number concentration of cloud droplets (Nd) in ice-free convective clouds and of particles large enough to act as cloud condensation nuclei (CCN) measured at the lateral boundaries of cloud elements. The data were collected during the ACRIDICON-CHUVA aircraft campaign over the Amazon Basin. The results indicate that the CCN particles at the lateral cloud boundaries are dominated by detrainment from the cloud. The CCN concentrations detrained from non-precipitating convective clouds are smaller compared to below cloud bases. The detrained CCN particles from precipitating cloud volumes have relatively larger sizes, but lower concentrations. Our findings indicate that CCN particles ingested from below cloud bases are activated into cloud droplets, which evaporate at the lateral boundaries and above cloud base and release the CCN again to ambient cloud-free air, after some cloud processing. These results support the hypothesis that the CCN around the cloud are cloud-processed.