Search Results

Now showing 1 - 10 of 191
  • Item
    Climate change and international migration: Exploring the macroeconomic channel
    (San Francisco, California, US : PLOS, 2022) Rikani, Albano; Frieler, Katja; Schewe, Jacob
    International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3°C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.
  • Item
    Our future in the Anthropocene biosphere
    (Dordrecht : Springer Netherlands, 2021) Folke, Carl; Polasky, Stephen; Rockström, Johan; Galaz, Victor; Westley, Frances; Lamont, Michèle; Scheffer, Marten; Österblom, Henrik; Carpenter, Stephen R.; Chapin, F. Stuart; Seto, Karen C.; Weber, Elke U.; Crona, Beatrice I.; Daily, Gretchen C.; Dasgupta, Partha; Gaffney, Owen; Gordon, Line J.; Hoff, Holger; Levin, Simon A.; Lubchenco, Jane; Steffen, Will; Walker, Brian H.
    The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. © 2021, The Author(s).
  • Item
    Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa?
    (Basel, Switzerland : MDPI AG, 2020) Gleixner, Stephanie; Demissie, Teferi; Diro, Gulilat Tefera
    Reanalysis products are often taken as an alternative solution to observational weather and climate data due to availability and accessibility problems, particularly in data-sparse regions such as Africa. Proper evaluation of their strengths and weaknesses, however, should not be overlooked. The aim of this study was to evaluate the performance of ERA5 reanalysis and to document the progress made compared to ERA-interim for the fields of near-surface temperature and precipitation over Africa. Results show that in ERA5 the climatological biases in temperature and precipitation are clearly reduced and the representation of inter-annual variability is improved over most of Africa. However, both reanalysis products performed less well in terms of capturing the observed long-term trends, despite a slightly better performance of ERA5 over ERA-interim. Further regional analysis over East Africa shows that the representation of the annual cycle of precipitation is substantially improved in ERA5 by reducing the wet bias during the rainy season. The spatial distribution of precipitation during extreme years is also better represented in ERA5. While ERA5 has improved much in comparison to its predecessor, there is still demand for improved products with even higher resolution and accuracy to satisfy impact-based studies, such as in agriculture and water resources. © 2020 by the authors.
  • Item
    Multiscale Spatiotemporal Analysis of Extreme Events in the Gomati River Basin, India
    (Basel : MDPI, 2021) Kalyan, AVS; Ghose, Dillip Kumar; Thalagapu, Rahul; Guntu, Ravi Kumar; Agarwal, Ankit; Kurths, Jürgen; Rathinasamy, Maheswaran
    Accelerating climate change is causing considerable changes in extreme events, leading to immense socioeconomic loss of life and property. In this study, we investigate the characteristics of extreme climate events at a regional scale to ‐understand these events’ propagation in the near fu-ture. We have considered sixteen extreme climate indices defined by the World Meteorological Or-ganization’s Expert Team on Climate Change Detection and Indices from a long‐term dataset (1951– 2018) of 53 locations in Gomati River Basin, North India. We computed the present and future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent analysis. The periodicities and non‐stationary features were estimated using the continuous wavelet transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for certain com-binations of indices. The study results show different variation in the patterns of the extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at all stations, indi-cating a reduction in precipitation in the future. DD exhibits a sustainable decreasing trend at almost all the stations over the basin barring a few exceptions highlight that the basin is turning drier. The wavelet power spectrum for D95P showed significant power distributed across the 2–16‐year bands, and the two‐year period was dominant in the global power spectrum around 1970–1990. One interest-ing finding is that a dominant two‐year period in D95P has changed to the four years after 1984 and remains in the past two decades. The joint return period’s resulting values are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an underestimation of extremes. © 2021 by the author. Licensee MDPI, Basel, Switzerland.
  • Item
    Management-induced changes in soil organic carbon on global croplands
    (Katlenburg-Lindau [u.a.] : Copernicus, 2022) Karstens, Kristine; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Dondini, Marta; Heinke, Jens; Kuhnert, Matthias; Müller, Christoph; Rolinski, Susanne; Smith, Pete; Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander
    Soil organic carbon (SOC), one of the largest terrestrial carbon (C) stocks on Earth, has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global C stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatially explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with a reduced-complexity model based on the Intergovernmental Panel on Climate Change (IPCC) tier 2 method to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that, due to arable farming, soils have lost around 34.6 GtC relative to a counterfactual hypothetical natural state in 1975. Within the period 1975-2010, this SOC debt continued to expand by 5 GtC (0.14 GtCyr-1) to around 39.6 GtC. However, accounting for historical management led to 2.1 GtC fewer (0.06 GtCyr-1) emissions than under the assumption of constant management. We also find that management decisions have influenced the historical SOC trajectory most strongly by residue returning, indicating that SOC enhancement by biomass retention may be a promising negative emissions technique. The reduced-complexity SOC model may allow us to simulate management-induced SOC enhancement - also within computationally demanding integrated (land use) assessment modeling.
  • Item
    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) De Oliveira Garcia, Wagner; Amann, Thorben; Hartmann, Jens; Karstens, Kristine; Popp, Alexander; Boysen, Lena R.; Smith, Pete; Goll, Daniel
    Limiting global mean temperature changes to well below 2 °C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a lowgeogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-Pdemand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 GtC would be accumulated by biomass. An average amount of ∼ 150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∼ 12 GtC (∼ 0:2-∼ 27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basaltm2 a1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-Available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-Available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests
    (Katlenburg-Lindau : European Geosciences Union, 2021) Sakschewski, Boris; Bloh, Werner von; Drüke, Markus; Sörensson, Anna Amelia; Ruscica, Romina; Langerwisch, Fanny; Billing, Maik; Bereswill, Sarah; Hirota, Marina; Oliveira, Rafael Silva; Heinke, Jens; Thonicke, Kirsten
    A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those studies have acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dynamic global vegetation model (DGVM) and apply it to tropical and sub-tropical South America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulation of intra-annual productivity and evapotranspiration and consequently of forest cover and spatial biomass distribution. We find that climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and below-ground biomass across the study region. Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry climates is crucial to explaining the current dominance, productivity and evapotranspiration of evergreen forests in tropical South America.
  • Item
    Photobiomodulation of lymphatic drainage and clearance: Perspective strategy for augmentation of meningeal lymphatic functions
    (Washington, DC : Optica, 2020) Semyachkina-Glushkovskaya, Oxana; Abdurashitov, Arkady; Dubrovsky, Alexander; Klimova, Maria; Agranovich, Ilana; Terskov, Andrey; Shirokov, Alexander; Vinnik, Valeria; Kuzmina, Anna; Lezhnev, Nikita; Blokhina, Inna; Shnitenkova, Anastassia; Tuchin, Valery; Rafailov, Edik; Kurths, Jurgen
    There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm2) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs. We assume that PBM-mediated relaxation of the lymphatic vessels can be possible mechanisms underlying increasing the permeability of the lymphatic endothelium that allows molecules transported by the lymphatic vessels and explain PBM stimulation of lymphatic drainage and clearance. These findings open new strategies for the stimulation of MLVs functions and non-pharmacological therapy of brain diseases.
  • Item
    Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch
    (Hoboken, NJ : Wiley, 2020) Casanueva, Ana; Herrera, Sixto; Iturbide, Maialen; Lange, Stefan; Jury, Martin; Dosio, Alessandro; Maraun, Douglas; Gutiérrez, José M.
    Systematic biases in climate models hamper their direct use in impact studies and, as a consequence, many statistical bias adjustment methods have been developed to calibrate model outputs against observations. The application of these methods in a climate change context is problematic since there is no clear understanding on how these methods may affect key magnitudes, for example, the climate change signal or trend, under different sources of uncertainty. Two relevant sources of uncertainty, often overlooked, are the sensitivity to the observational reference used to calibrate the method and the effect of the resolution mismatch between model and observations (downscaling effect). In the present work, we assess the impact of these factors on the climate change signal of temperature and precipitation considering marginal, temporal and extreme aspects. We use eight standard and state-of-the-art bias adjustment methods (spanning a variety of methods regarding their nature—empirical or parametric—, fitted parameters and trend-preservation) for a case study in the Iberian Peninsula. The quantile trend-preserving methods (namely quantile delta mapping (QDM), scaled distribution mapping (SDM) and the method from the third phase of ISIMIP-ISIMIP3) preserve better the raw signals for the different indices and variables considered (not all preserved by construction). However, they rely largely on the reference dataset used for calibration, thus presenting a larger sensitivity to the observations, especially for precipitation intensity, spells and extreme indices. Thus, high-quality observational datasets are essential for comprehensive analyses in larger (continental) domains. Similar conclusions hold for experiments carried out at high (approximately 20 km) and low (approximately 120 km) spatial resolutions. © 2020 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
  • Item
    ALMA and MUSE observations reveal a quiescent multi-phase circumgalactic medium around the z ≃ 3.6 radio galaxy 4C 19.71
    (Les Ulis : EDP Sciences, 2021) Falkendal, Theresa; Lehnert, Matthew D.; Vernet, Joël; De Breuck, Carlos; Wang, Wuji
    We present MUSE at VLT imaging spectroscopy of rest-frame ultraviolet emission lines and ALMA observations of the [C I] 3P1-3P0 emission line, probing both the ionized and diffuse molecular medium around the radio galaxy 4C 19.71 at z ≃ 3.6. This radio galaxy has extended Lyα emission over a region ∼100 kpc in size preferentially oriented along the axis of the radio jet. Faint Lyα emission extends beyond the radio hot spots. We also find extended C IV and He II emission over a region of ∼150 kpc in size, where the most distant emission lies ∼40 kpc beyond the north radio lobe and has narrow full width half maximum (FWHM) line widths of ∼180 km s-1 and a small relative velocity offset Δv ∼ 130 km s-1 from the systemic redshift of the radio galaxy. The [C I] is detected in the same region with FWHM ∼100 km s-1 and Δv ∼ 5 km s-1, while [C I] is not detected in the regions south of the radio galaxy. We interpret the coincidence in the northern line emission as evidence of relatively quiescent multi-phase gas residing within the halo at a projected distance of ∼75 kpc from the host galaxy. To test this hypothesis, we performed photoionization and photo-dissociated region (PDR) modeling, using the code Cloudy, of the three emission line regions: the radio galaxy proper and the northern and southern regions. We find that the [C I]/C IVλλ1548, 1551 and C IVλλ1548, 1551/He II ratios of the two halo regions are consistent with a PDR or ionization front in the circumgalactic medium likely energized by photons from the active galactic nuclei. This modeling is consistent with a relatively low metallicity, 0.03 < [Z/Z⊙] < 0.1, and diffuse ionization with an ionization parameter (proportional to the ratio of the photon number density and gas density) of log U ∼ -3 for the two circumgalactic line emission regions. Using rough mass estimates for the molecular and ionized gas, we find that the former may be tracing ≈2-4 orders of magnitude more mass. As our data are limited in signal-to-noise due to the faintness of the line, deeper [C I] observations are required to trace the full extent of this important component in the circumgalactic medium. © T. Falkendal et al. 2021.