Search Results

Now showing 1 - 2 of 2
  • Item
    Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
    (London : BMJ Publ. Group, 2021) Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio, Samuel; Garcia, null; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J. K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, Haidong
    Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
  • Item
    Object detection networks and augmented reality for cellular detection in fluorescence microscopy
    (New York, NY : Rockefeller Univ. Press, 2020) Waithe, Dominic; Brown, Jill M.; Reglinski, Katharina; Diez-Sevilla, Isabel; Roberts, David; Eggeling, Christian
    Object detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects in photography images. We demonstrate their application for the classification and localization of cells in fluorescence microscopy by benchmarking four leading object detection algorithms across multiple challenging 2D microscopy datasets. Furthermore we develop and demonstrate an algorithm that can localize and image cells in 3D, in close to real time, at the microscope using widely available and inexpensive hardware. Furthermore, we exploit the fast processing of these networks and develop a simple and effective augmented reality (AR) system for fluorescence microscopy systems using a display screen and back-projection onto the eyepiece. We show that it is possible to achieve very high classification accuracy using datasets with as few as 26 images present. Using our approach, it is possible for relatively nonskilled users to automate detection of cell classes with a variety of appearances and enable new avenues for automation of fluorescence microscopy acquisition pipelines. © 2020 Waithe et al.