Search Results

Now showing 1 - 10 of 151
  • Item
    Vortex Motions in the Solar Atmosphere: Definitions, Theory, Observations, and Modelling
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Tziotziou, K.; Scullion, E.; Shelyag, S.; Steiner, O.; Khomenko, E.; Tsiropoula, G.; Canivete Cuissa, J.R.; Wedemeyer, S.; Kontogiannis, I.; Yadav, N.; Kitiashvili, I. N.; Skirvin, S.J.; Dakanalis, I.; Kosovichev, A.G.; Fedun, V.
    Vortex flows, related to solar convective turbulent dynamics at granular scales and their interplay with magnetic fields within intergranular lanes, occur abundantly on the solar surface and in the atmosphere above. Their presence is revealed in high-resolution and high-cadence solar observations from the ground and from space and with state-of-the-art magnetoconvection simulations. Vortical flows exhibit complex characteristics and dynamics, excite a wide range of different waves, and couple different layers of the solar atmosphere, which facilitates the channeling and transfer of mass, momentum and energy from the solar surface up to the low corona. Here we provide a comprehensive review of documented research and new developments in theory, observations, and modelling of vortices over the past couple of decades after their observational discovery, including recent observations in Hα, innovative detection techniques, diverse hydrostatic modelling of waves and forefront magnetohydrodynamic simulations incorporating effects of a non-ideal plasma. It is the first systematic overview of solar vortex flows at granular scales, a field with a plethora of names for phenomena that exhibit similarities and differences and often interconnect and rely on the same physics. With the advent of the 4-m Daniel K. Inouye Solar Telescope and the forthcoming European Solar Telescope, the ongoing Solar Orbiter mission, and the development of cutting-edge simulations, this review timely addresses the state-of-the-art on vortex flows and outlines both theoretical and observational future research directions.
  • Item
    The metal-poor end of the Spite plateau: II. Chemical and dynamical investigation
    (Les Ulis : EDP Sciences, 2021) Matas Pinto, A. M.; Spite, M.; Caffau, E.; Bonifacio, P.; Sbordone, L.; Sivarani, T.; Steffen, M.; Spite, F.; François, P.; Di Matteo, P.
    Context. The study of old, metal-poor stars deepens our knowledge on the early stages of the universe. In particular, the study of these stars gives us a valuable insight into the masses of the first massive stars and their emission of ionising photons. Aims. We present a detailed chemical analysis and determination of the kinematic and orbital properties of a sample of 11 dwarf stars. These are metal-poor stars, and a few of them present a low lithium content. We inspected whether the other elements also present anomalies. Methods. We analysed the high-resolution UVES spectra of a few metal-poor stars using the Turbospectrum code to synthesise spectral lines profiles. This allowed us to derive a detailed chemical analysis of Fe, C, Li, Na, Mg, Al, Si, CaI, CaII, ScII, TiII, Cr, Mn, Co, Ni, Sr, and Ba. Results. We find excellent coherence with the reference metal-poor First Stars sample. The lithium-poor stars do not present any anomaly of the abundance of the elements other than lithium. Among the Li-poor stars, we show that CS 22882-027 is very probably a blue-straggler. The star CS 30302-145, which has a Li abundance compatible with the plateau, has a very low Si abundance and a high Mn abundance. In many aspects, it is similar to the α-poor star HE 1424-0241, but it is less extreme. It could have been formed in a satellite galaxy and later been accreted by our Galaxy. This hypothesis is also supported by its kinematics.
  • Item
    Untangling the Sources of Abundance Dispersion in Low-metallicity Stars
    (London : Institute of Physics Publ., 2023) Griffith, Emily J.; Johnson, Jennifer A.; Weinberg, David H.; Ilyin, Ilya; Johnson, James W.; Rodriguez-Martinez, Romy; Strassmeier, Klaus G.
    We measure abundances of 12 elements (Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni) in a sample of 86 metal-poor (−2 ≲ [Fe/H] ≲ −1) subgiant stars in the solar neighborhood. Abundances are derived from high-resolution spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope, modeled using iSpec and MOOG. By carefully quantifying the impact of photon-noise (<0.05 dex for all elements), we robustly measure the intrinsic scatter of abundance ratios. At fixed [Fe/H], the rms intrinsic scatter in [X/Fe] ranges from 0.04 (Cr) to 0.16 dex (Na), with a median of 0.08 dex. Scatter in [X/Mg] is similar, and accounting for [α/Fe] only reduces the overall scatter moderately. We consider several possible origins of the intrinsic scatter with particular attention to fluctuations in the relative enrichment by core-collapse supernovae (CCSN) and Type Ia supernovae and stochastic sampling of the CCSN progenitor mass distribution. The stochastic sampling scenario provides a good quantitative explanation of our data if the effective number of CCSN contributing to the enrichment of a typical sample star is N ∼ 50. At the median metallicity of our sample, this interpretation implies that the CCSN ejecta are mixed over a gas mass ∼6 × 104 M ⊙ before forming stars. The scatter of elemental abundance ratios is a powerful diagnostic test for simulations of star formation, feedback, and gas mixing in the early phases of the Galaxy.
  • Item
    FROM GLOBAL TO SPATIALLY RESOLVED IN LOW-REDSHIFT GALAXIES
    (México : Inst., 2021-4-14) Sánchez, S.F.; Walcher, C.J.; Lopez-Cobá, C.; Barrera-Ballesteros, J.K.; Mejía-Narváez, A.; Espinosa-Ponce, C.; Camps-Fariña, A.
    Our understanding of the structure, composition and evolution of galaxies has strongly improved in the last decades, mostly due to new results based on large spectroscopic and imaging surveys. In particular, the nature of ionized gas, its ionization mechanisms, its relation with the stellar properties and chemical composition, the existence of scaling relations that describe the cycle between stars and gas, and the corresponding evolution patterns have been widely explored and described. More recently, the introduction of additional techniques, in particular integral field spectroscopy, and their use in large galaxy surveys, have forced us to re-interpret most of those recent results from a spatially resolved perspective. This review is aimed to complement recent efforts to compile and summarize this change of paradigm in the interpretation of galaxy evolution. To this end we replicate published results, and present novel ones, based on the largest compilation of IFS data of galaxies in the nearby universe to date. © 2021: Instituto de Astronomía, Universidad Nacional Autónoma de México.
  • Item
    Ultrafaint Dwarf Galaxy Candidates in the M81 Group: Signatures of Group Accretion
    (London : Institute of Physics Publ., 2022) Bell, Eric F.; Smercina, Adam; Price, Paul A.; D’Souza, Richard; Bailin, Jeremy; de Jong, Roelof S.; Gozman, Katya; Jang, In Sung; Monachesi, Antonela; Gnedin, Oleg Y.; Slater, Colin T.
    The faint and ultrafaint dwarf galaxies in the Local Group form the observational bedrock upon which our understanding of small-scale cosmology rests. In order to understand whether this insight generalizes, it is imperative to use resolved-star techniques to discover similarly faint satellites in nearby galaxy groups. We describe our search for ultrafaint galaxies in the M81 group using deep ground-based resolved-star data sets from Subaru’s Hyper Suprime-Cam. We present one new ultrafaint dwarf galaxy in the M81 group and identify five additional extremely low surface brightness candidate ultrafaint dwarfs that reach deep into the ultrafaint regime to M V ∼ − 6 (similar to current limits for Andromeda satellites). These candidates’ luminosities and sizes are similar to known Local Group dwarf galaxies Tucana B, Canes Venatici I, Hercules, and Boötes I. Most of these candidates are likely to be real, based on tests of our techniques on blank fields. Intriguingly, all of these candidates are spatially clustered around NGC 3077, which is itself an M81 group satellite in an advanced state of tidal disruption. This is somewhat surprising, as M81 itself and its largest satellite M82 are both substantially more massive than NGC 3077 and, by virtue of their greater masses, would have been expected to host as many or more ultrafaint candidates. These results lend considerable support to the idea that satellites of satellites are an important contribution to the growth of satellite populations around Milky Way-mass galaxies.
  • Item
    Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts
    (Washington, DC : Soc., 2021) Stoll, Andreas; Madhav, Kalaga V.; Roth, Martin M.
    We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on a silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000-60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.
  • Item
    The Gaia-ESO survey: Mapping the shape and evolution of the radial abundance gradients with open clusters
    (Les Ulis : EDP Sciences, 2023) Magrini, L.; Viscasillas Vázquez, C.; Spina, L.; Randich, S.; Romano, D.; Franciosini, E.; Recio-Blanco, A.; Nordlander, T.; D'orazi, V.; Baratella, M.; Smiljanic, R.; Dantas, M.L.L.; Pasquini, L.; Spitoni, E.; Casali, G.; Van Der Swaelmen, M.; Bensby, T.; Stonkute, E.; Feltzing, S.; Sacco, G.G.; Bragaglia, A.; Pancino, E.; Heiter, U.; Biazzo, K.; Gilmore, G.; Bergemann, M.; Tautvaišienė, G.; Worley, C.; Hourihane, A.; Gonneau, A.; Morbidelli, L.
    Context. The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangling the scenarios of formation and evolution of the Galaxy. Aims. In this paper we used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance-to-iron ratio gradients, and their time evolution. Methods. We selected member stars in 62 open clusters, with ages from 0.1 to about 7 Gyr, located in the Galactic thin disc at galactocentric radii (RGC) from about 6 to 21 kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins. Results. The [Fe/H] gradient has a slope of −0.054 dex kpc−1. It can be better approximated with a two-slope shape, steeper for RGC ≤ 11.2 kpc and flatter in the outer regions. We saw different behaviours for elements belonging to different channels. For the time evolution of the gradient, we found that the youngest clusters (age < 1 Gyr) in the inner disc have lower metallicity than their older counterparts and that they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggest that the most likely one may be related to a bias introduced by the standard spectroscopic analysis producing lower metallicities in the analysis of low-gravity stars. Conclusions. To delineate the shape of the ‘true’ gradient, we should most likely limit our analysis to stars with low surface gravity log g >  2.5 and microturbulent parameter ξ <  1.8 km s−1. Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc over the last 3 Gyr. We found a secondary role of cluster migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.
  • Item
    The eROSITA X-ray telescope on SRG
    (Les Ulis : EDP Sciences, 2021) Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; Bornemann, W.; Bräuninger, H.; Brüggen, M.; Brunner, H.; Brusa, M.; Bulbul, E.; Buntov, M.; Burwitz, V.; Burkert, W.; Clerc, N.; Churazov, E.; Coutinho, D.; Dauser, T.; Dennerl, K.; Doroshenko, V.; Eder, J.; Emberger, V.; Eraerds, T.; Finoguenov, A.; Freyberg, M.; Friedrich, P.; Friedrich, S.; Fürmetz, M.; Georgakakis, A.; Gilfanov, M.; Granato, S.; Grossberger, C.; Gueguen, A.; Gureev, P.; Haberl, F.; Hälker, O.; Hartner, G.; Hasinger, G.; Huber, H.; Ji, L.; Kienlin, A. v.; Kink, W.; Korotkov, F.; Kreykenbohm, I.; Lamer, G.; Lomakin, I.; Lapshov, I.; Liu, T.; Maitra, C.; Meidinger, N.; Menz, B.; Merloni, A.; Mernik, T.; Mican, B.; Mohr, J.; Müller, S.; Nandra, K.; Nazarov, V.; Pacaud, F.; Pavlinsky, M.; Perinati, E.; Pfeffermann, E.; Pietschner, D.; Ramos-Ceja, M. E.; Rau, A.; Reiffers, J.; Reiprich, T. H.; Robrade, J.; Salvato, M.; Sanders, J.; Santangelo, A.; Sasaki, M.; Scheuerle, H.; Schmid, C.; Schmitt, J.; Schwope, A.; Shirshakov, A.; Steinmetz, M.; Stewart, I.; Strüder, L.; Sunyaev, R.; Tenzer, C.; Tiedemann, L.; Trümper, J.; Voron, V.; Weber, P.; Wilms, J.; Yaroshenko, V.
    eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
  • Item
    Seeking celestial positronium with an OH-suppressed diffraction-limited spectrograph
    (Washington, DC : The Optical Society, 2021) Robertson, Gordon; Ellis, Simon; Yu, Qingshan; Bland-Hawthorn, Joss; Betters, Christopher; Roth, Martin; Leon-Saval, Sergio
    Celestially, positronium (Ps) has been observed only through gamma-ray emission produced by its annihilation. However, in its triplet state, a Ps atom has a mean lifetime long enough for electronic transitions to occur between quantum states. This produces a recombination spectrum observable in principle at near IR wavelengths, where angular resolution greatly exceeding that of the gamma-ray observations is possible. However, the background in the near IR is dominated by extremely bright atmospheric hydroxyl (OH) emission lines. In this paper, we present the design of a diffraction-limited spectroscopic system using novel photonic components—a photonic lantern, OH fiber Bragg grating filters, and a photonic TIGER 2D pseudo-slit—to observe the Ps Balmer alpha line at 1.3122 µm for the first time, to our knowledge.
  • Item
    MACHO 311.37557.169: A VY Scl star
    (Berlin : Wiley-VCH Verl., 2020) Wörpel, Hauke; Schwope, Axel D.; Traulsen, Iris; Brown, Michael J.I.
    Optical surveys, such as theMACHO project, often uncover variable stars whose classification requires follow-up observations by other instruments. We performed X-ray spectroscopy and photometry of the unusual variable starMACHO 311.37557.169 with XMM-Newton in April 2018, supplemented by archival X-ray and optical spectrographic data. The star has a bolometric X-ray luminosity of about 1 × 1032 erg s−1 cm−2 and a heavily absorbed two-temperature plasma spectrum. The shape of its light curve, its overall brightness, its X-ray spectrum, and the emission lines in its optical spectrum suggest that it is most likely a VY Scl cataclysmic variable.