Search Results

Now showing 1 - 10 of 15
  • Item
    Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood–brain barrier leakage
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Runnova, Anastasiya; Zhuravlev, Maksim; Ukolov, Rodion; Blokhina, Inna; Dubrovski, Alexander; Lezhnev, Nikita; Sitnikova, Evgeniya; Saranceva, Elena; Kiselev, Anton; Karavaev, Anatoly; Selskii, Anton; Semyachkina-Glushkovskaya, Oxana; Penzel, Thomas; Kurths, Jurgen
    A new approach for detection oscillatory patterns and estimation of their dynamics based by a modified CWT skeleton method is presented. The method opens up additional perspectives for the analysis of subtle changes in the oscillatory activity of complex nonstationary signals. The method was applied to analyze unique experimental signals obtained in usual conditions and after the non-invasive increase in the blood–brain barrier (BBB) permeability in 10 male Wistar rats. The results of the wavelet-analysis of electrocorticography (ECoG) recorded in a normal physiological state and after an increase in the BBB permeability of animals demonstrate significant changes between these states during wakefulness of animals and an essential smoothing of these differences during sleep. Sleep is closely related to the processes of observed changes in the BBB permeability.
  • Item
    Frequency spectrum recurrence analysis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Ladeira, Guênia; Marwan, Norbert; Destro-Filho, João-Batista; Davi Ramos, Camila; Lima, Gabriela
    In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were characterized and analysed by means of techniques already known to compare with the results of the innovative technique that we present here. We verified that, standard recurrence quantification analysis by means of EES time series cannot statistically distinguish the two states. However, the new frequency spectrum recurrence quantification exhibit quantitatively whether the participants have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence concentration on frequency bands. These analyses show that EES with similar frequency spectrum have different recurrence levels revealing different behaviours of the nervous system. The technique can be used to deepen the study on depression, stress, concentration level and other neurological issues and also can be used in any complex system.
  • Item
    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Riedel, Nils; Fuller, Dorian Q.; Marwan, Norbert; Poretschkin, Constantin; Basavaiah, Nathani; Menzel, Philip; Ratnam, Jayashree; Prasad, Sushma; Sachse, Dirk; Sankaran, Mahesh; Sarkar, Saswati; Stebich, Martina
    An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed.
  • Item
    Epidemics with mutating infectivity on small-world networks
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Rüdiger, Sten; Plietzsch, Anton; Sagués, Francesc; Sokolov, Igor M.; Kurths, Jürgen
    Epidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent’s infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation. © 2020, The Author(s).
  • Item
    Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Salack, Seyni; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, Moumini; Giannini, Alessandra
    The regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
  • Item
    A network-based microfoundation of Granovetter’s threshold model for social tipping
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Wiedermann, Marc; Smith, E. Keith; Heitzig, Jobst; Donges, Jonathan F.
    Social tipping, where minorities trigger larger populations to engage in collective action, has been suggested as one key aspect in addressing contemporary global challenges. Here, we refine Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical modelling tool for understanding social tipping processes and resolve issues that so far have hindered such applications. Based on real-world observations and social movement theory, we group the population into certain or potential actors, such that – in contrast to its original formulation – the model predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain and analytically derive that previously hypothesized broad threshold distributions emerge if individuals become active via social interaction. Thus, through intuitive parameters and low dimensionality our refined model is adaptable to explain the likelihood of engaging in collective behavior where social-tipping-like processes emerge as saddle-node bifurcations and hysteresis. © 2020, The Author(s).
  • Item
    Decay radius of climate decision for solar panels in the city of Fresno, USA
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Barton-Henry, Kelsey; Wenz, Leonie; Levermann, Anders
    To design incentives towards achieving climate mitigation targets, it is important to understand the mechanisms that affect individual climate decisions such as solar panel installation. It has been shown that peer effects are important in determining the uptake and spread of household photovoltaic installations. Due to coarse geographical data, it remains unclear whether this effect is generated through geographical proximity or within groups exhibiting similar characteristics. Here we show that geographical proximity is the most important predictor of solar panel implementation, and that peer effects diminish with distance. Using satellite imagery, we build a unique geo-located dataset for the city of Fresno to specify the importance of small distances. Employing machine learning techniques, we find the density of solar panels within the shortest measured radius of an address is the most important factor in determining the likelihood of that address having a solar panel. The importance of geographical proximity decreases with distance following an exponential curve with a decay radius of 210 meters. The dependence is slightly more pronounced in low-income groups. These findings support the model of distance-related social diffusion, and suggest priority should be given to seeding panels in areas where few exist.
  • Item
    Regions of intensification of extreme snowfall under future warming
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Quante, Lennart; Willner, Sven N.; Middelanis, Robin; Levermann, Anders
    Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.
  • Item
    Coherent response of the Indian Monsoon Rainfall to Atlantic Multi-decadal Variability over the last 2000 years
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Naidu, Pothuri Divakar; Ganeshram, Raja; Bollasina, Massimo A.; Panmei, Champoungam; Nürnberg, Dirk; Donges, Jonathan F.
    Indian Summer Monsoon (ISM) rainfall has a direct effect on the livelihoods of two billion people in the Indian-subcontinent. Yet, our understanding of the drivers of multi-decadal variability of the ISM is far from being complete. In this context, large-scale forcing of ISM rainfall variability with multi-decadal resolution over the last two millennia is investigated using new records of sea surface salinity (δ18Ow) and sea surface temperatures (SSTs) from the Bay of Bengal (BoB). Higher δ18Ow values during the Dark Age Cold Period (1550 to 1250 years BP) and the Little Ice Age (700 to 200 years BP) are suggestive of reduced ISM rainfall, whereas lower δ18Ow values during the Medieval Warm Period (1200 to 800 years BP) and the major portion of the Roman Warm Period (1950 to 1550 years BP) indicate a wetter ISM. This variability in ISM rainfall appears to be modulated by the Atlantic Multi-decadal Oscillation (AMO) via changes in large-scale thermal contrast between the Asian land mass and the Indian Ocean, a relationship that is also identifiable in the observational data of the last century. Therefore, we suggest that inter-hemispheric scale interactions between such extra tropical forcing mechanisms and global warming are likely to be influential in determining future trends in ISM rainfall.
  • Item
    Climate change and specialty coffee potential in Ethiopia
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Chemura, Abel; Mudereri, Bester Tawona; Yalew, Amsalu Woldie; Gornott, Christoph
    Current climate change impact studies on coffee have not considered impact on coffee typicities that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to provide a quantitative risk assessment of the impact of climate change on suitability of five premium specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables determining coffee suitability in the combined model is different from those for specialty coffees despite the climatic factors remaining more important in determining suitability than topographic and soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined model projects a net gain in coffee production suitability under climate change in general but losses in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality coffee sector and area-specific adaptation measures are required to build resilience.