Search Results

Now showing 1 - 10 of 101
  • Item
    Biobank Oversight and Sanctions Under the General Data Protection Regulation
    (Dordrecht ; Heidelberg ; New York ; London : Springer, 2021) Hallinan, Dara; Slokenberga, Santa; Tzortzatou, Olga; Reichel, Jane
    This contribution offers an insight into the function and problems of the oversight and sanctions mechanisms outlined in the General Data Protection Regulation as they relate to the biobanking context. These mechanisms might be considered as meta-mechanisms—mechanisms relating to, but not consisting of, substantive legal principles—functioning in tandem to ensure biobank compliance with data protection principles. Each of the mechanisms outlines, on paper at least, comprehensive and impressive compliance architecture—both expanding on their capacity in relation to Directive 95/46. Accordingly, each mechanism looks likely to have a significant and lasting impact on biobanks and biobanking. Despite this comprehensiveness, however, the mechanisms are not immune from critique. Problems appear regarding the standard of protection provided for research subject rights, regarding the disproportionate impact on legitimate interests tied up with the biobanking process—particularly genomic research interests—and regarding their practical implementability in biobanking.
  • Item
    A Review on Recent Advances in Video-based Learning Research: Video Features, Interaction, Tools, and Technologies
    (Aachen, Germany : RWTH Aachen, 2021) Navarrete, Evelyn; Hoppe, Anett; Ewerth, Ralph; Cong, Gao; Ramanath, Maya
    Human learning shifts stronger than ever towards online settings, and especially towards video platforms. There is an abundance of tutorials and lectures covering diverse topics, from fixing a bike to particle physics. While it is advantageous that learning resources are freely available on the Web, the quality of the resources varies a lot. Given the number of available videos, users need algorithmic support in finding helpful and entertaining learning resources. In this paper, we present a review of the recent research literature (2020-2021) on video-based learning. We focus on publications that examine the characteristics of video content, analyze frequently used features and technologies, and, finally, derive conclusions on trends and possible future research directions.
  • Item
    Fingertip friction and tactile rating of wrapping papers
    (Berlin ; Heidelberg : Springer, 2022) Jost, Kim Michèle; Drewing, Knut; Bennewitz, Roland; Seifi, Hasti; Kappers, Astrid M. L.; Schneider, Oliver; Drewing, Knut; Pacchierotti, Claudio; Abbasimoshaei, Alireza; Huisman, Gijs; Kern, Thorsten A.
    The tactile exploration and perception of wrapping papers is investigated in terms of fingertip friction and rating of sensory, affective, and evaluative adjectives. Friction coefficients, which vary significantly between samples, are correlated with factors such as valence which are identified in a principal component analysis of subjective ratings. We found that affective appraisals of valence and arousal as well as evaluations of novelty, but not of value, decreased with increasing friction.
  • Item
    On the Role of Images for Analyzing Claims in Social Media
    (Aachen, Germany : RWTH Aachen, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, Ralph
    Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
  • Item
    Survey on Big Data Applications
    (Cham : Springer, 2020) Janev, Valentina; Pujić, Dea; Jelić, Marko; Vidal, Maria-Esther; Janev, Valentina; Graux, Damien; Jabeen, Hajira; Sallinger, Emanuel
    The goal of this chapter is to shed light on different types of big data applications needed in various industries including healthcare, transportation, energy, banking and insurance, digital media and e-commerce, environment, safety and security, telecommunications, and manufacturing. In response to the problems of analyzing large-scale data, different tools, techniques, and technologies have bee developed and are available for experimentation. In our analysis, we focused on literature (review articles) accessible via the Elsevier ScienceDirect service and the Springer Link service from more recent years, mainly from the last two decades. For the selected industries, this chapter also discusses challenges that can be addressed and overcome using the semantic processing approaches and knowledge reasoning approaches discussed in this book.
  • Item
    Understanding Class Representations: An Intrinsic Evaluation of Zero-Shot Text Classification
    (Aachen, Germany : RWTH Aachen, 2021) Hoppe, Fabian; Dessì, Danilo; Sack, Harald; Alam, Mehwish; Buscaldi, Davide; Cochez, Michael; Osborne, Francesco; Reforgiato Recupero, Diego; Sack, Harald
    Frequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-Shot Classification through the inclusion of external class definitions and then exploiting the relations between classes seen during training and unseen classes (Zero-shot). However, it requires a class embedding space capable of accurately representing the semantic relatedness between classes. This work defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of this relatedness. The results imply that textual embeddings are able to capture more semantics than Knowledge Graph embeddings, but combining both modalities yields the best performance.
  • Item
    Steps towards a Dislocation Ontology for Crystalline Materials
    (Aachen, Germany : RWTH Aachen, 2021) Ihsan, Ahmad Zainul; Dessì, Danilo; Alam, Mehwish; Sack, Harald; Sandfeld, Stefan; García-Castro, Raúl; Davies, John; Antoniou, Grigoris; Fortuna, Carolina
    The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain “dislocations" - a line-like defect type. Dislocation decisively determine many important materials properties. Over the past decades, significant effort was put into understanding dislocation behavior across different length scales both with experimental characterization techniques as well as with simulations. However, for describing such dislocation structures there is still a lack of a common standard to represent and to connect dislocation domain knowledge across different but related communities. An ontology offers a common foundation to enable knowledge representation and data interoperability, which are important components to establish a “digital twin". This paper outlines the first steps towards the design of an ontology in the dislocation domain and shows a connection with the already existing ontologies in the materials science and engineering domain.
  • Item
    zbMATH Open: API Solutions and Research Challenges
    (Aachen, Germany : RWTH Aachen, 2021) Petrera, Matteo; Trautwein, Dennis; Beckenbach, Isabel; Ehsani, Dariush; Müller, Fabian; Teschke, Olaf; Gipp, Bela; Schubotz, Moritz; Balke, Wolf-Tilo; de Waard, Anita; Fu, Yuanxi; Hua, Bolin; Schneider, Jodi; Song, Ningyuan; Wang, Xiaoguang
    We present zbMATH Open, the most comprehensive collection of reviews and bibliographic metadata of scholarly literature in mathematics. Besides our website zbMATH.org which is openly accessible since the beginning of this year, we provide API endpoints to offer our data. APIs improve interoperability with others, i.e., digital libraries, and allow using our data for research purposes. In this article, we (1) illustrate the current and future overview of the services offered by zbMATH; (2) present the initial version of the zbMATH links API; (3) analyze potentials and limitations of the links API based on the example of the NIST Digital Library of Mathematical Functions; (4) and finally, present thezbMATHOpen dataset as a research resource and discuss connected open research problems.
  • Item
    Falcon 2.0: An Entity and Relation Linking Tool over Wikidata
    (New York City, NY : Association for Computing Machinery, 2020) Sakor, Ahmad; Singh, Kuldeep; Patel, Anery; Vidal, Maria-Esther
    The Natural Language Processing (NLP) community has significantly contributed to the solutions for entity and relation recognition from a natural language text, and possibly linking them to proper matches in Knowledge Graphs (KGs). Considering Wikidata as the background KG, there are still limited tools to link knowledge within the text to Wikidata. In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata. It receives a short natural language text in the English language and outputs a ranked list of entities and relations annotated with the proper candidates in Wikidata. The candidates are represented by their Internationalized Resource Identifier (IRI) in Wikidata. Falcon 2.0 resorts to the English language model for the recognition task (e.g., N-Gram tiling and N-Gram splitting), and then an optimization approach for the linking task. We have empirically studied the performance of Falcon 2.0 on Wikidata and concluded that it outperforms all the existing baselines. Falcon 2.0 is open source and can be reused by the community; all the required instructions of Falcon 2.0 are well-documented at our GitHub repository (https://github.com/SDM-TIB/falcon2.0). We also demonstrate an online API, which can be run without any technical expertise. Falcon 2.0 and its background knowledge bases are available as resources at https://labs.tib.eu/falcon/falcon2/.
  • Item
    Eigenfactor
    (München : De Gruyter Saur, 2021) Fraumann, Grischa; D'Souza, Jennifer; Holmberg, Kim
    The Eigenfactor™ is a journal metric, which was developed by Bergstrom and his colleagues at the University of Washington. They invented the Eigenfactor as a response to the criticism against the use of simple citation counts. The Eigenfactor makes use of the network structure of citations, i.e. citations between journals, and establishes the importance, influence or impact of a journal based on its location in a network of journals. The importance is defined based on the number of citations between journals. As such, the Eigenfactor algorithm is based on Eigenvector centrality. While journal based metrics have been criticized, the Eigenfactor has also been suggested as an alternative in the widely used San Francisco Declaration on ResearchAssessment (DORA).