Search Results

Now showing 1 - 10 of 24
  • Item
    Climatic windows for human migration out of Africa in the past 300,000 years
    ([London] : Nature Publishing Group UK, 2021) Beyer, Robert M.; Krapp, Mario; Eriksson, Anders; Manica, Andrea
    Whilst an African origin of modern humans is well established, the timings and routes of their expansions into Eurasia are the subject of heated debate, due to the scarcity of fossils and the lack of suitably old ancient DNA. Here, we use high-resolution palaeoclimate reconstructions to estimate how difficult it would have been for humans in terms of rainfall availability to leave the African continent in the past 300k years. We then combine these results with an anthropologically and ecologically motivated estimate of the minimum level of rainfall required by hunter-gatherers to survive, allowing us to reconstruct when, and along which geographic paths, expansions out of Africa would have been climatically feasible. The estimated timings and routes of potential contact with Eurasia are compatible with archaeological and genetic evidence of human expansions out of Africa, highlighting the key role of palaeoclimate variability for modern human dispersals.
  • Item
    Climate signals in river flood damages emerge under sound regional disaggregation
    ([London] : Nature Publishing Group UK, 2021) Sauer, Inga J.; Reese, Ronja; Otto, Christian; Geiger, Tobias; Willner, Sven N.; Guillod, Benoit P.; Bresch, David N.; Frieler, Katja
    Climate change affects precipitation patterns. Here, we investigate whether its signals are already detectable in reported river flood damages. We develop an empirical model to reconstruct observed damages and quantify the contributions of climate and socio-economic drivers to observed trends. We show that, on the level of nine world regions, trends in damages are dominated by increasing exposure and modulated by changes in vulnerability, while climate-induced trends are comparably small and mostly statistically insignificant, with the exception of South & Sub-Saharan Africa and Eastern Asia. However, when disaggregating the world regions into subregions based on river-basins with homogenous historical discharge trends, climate contributions to damages become statistically significant globally, in Asia and Latin America. In most regions, we find monotonous climate-induced damage trends but more years of observations would be needed to distinguish between the impacts of anthropogenic climate forcing and multidecadal oscillations.
  • Item
    Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China
    ([London] : Nature Publishing Group UK, 2021) Xing, Xiaofan; Wang, Rong; Bauer, Nico; Ciais, Philippe; Cao, Junji; Chen, Jianmin; Tang, Xu; Wang, Lin; Yang, Xin; Boucher, Olivier; Goll, Daniel; Peñuelas, Josep; Janssens, Ivan A.; Balkanski, Yves; Clark, James; Ma, Jianmin; Pan, Bo; Zhang, Shicheng; Ye, Xingnan; Wang, Yutao; Li, Qing; Luo, Gang; Shen, Guofeng; Li, Wei; Yang, Yechen; Xu, Siqing
    As China ramped-up coal power capacities rapidly while CO2 emissions need to decline, these capacities would turn into stranded assets. To deal with this risk, a promising option is to retrofit these capacities to co-fire with biomass and eventually upgrade to CCS operation (BECCS), but the feasibility is debated with respect to negative impacts on broader sustainability issues. Here we present a data-rich spatially explicit approach to estimate the marginal cost curve for decarbonizing the power sector in China with BECCS. We identify a potential of 222 GW of power capacities in 2836 counties generated by co-firing 0.9 Gt of biomass from the same county, with half being agricultural residues. Our spatially explicit method helps to reduce uncertainty in the economic costs and emissions of BECCS, identify the best opportunities for bioenergy and show the limitations by logistical challenges to achieve carbon neutrality in the power sector with large-scale BECCS in China.
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
  • Item
    Alternative carbon price trajectories can avoid excessive carbon removal
    ([London] : Nature Publishing Group UK, 2021) Strefler, Jessica; Kriegler, Elmar; Bauer, Nico; Luderer, Gunnar; Pietzcker, Robert C.; Giannousakis, Anastasis; Edenhofer, Ottmar
    The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.
  • Item
    Combining ambitious climate policies with efforts to eradicate poverty
    ([London] : Nature Publishing Group UK, 2021) Soergel, Bjoern; Kriegler, Elmar; Bodirsky, Benjamin Leon; Bauer, Nico; Leimbach, Marian; Popp, Alexander
    Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.
  • Item
    Network motifs shape distinct functioning of Earth’s moisture recycling hubs
    ([London] : Nature Publishing Group UK, 2022) Wunderling, Nico; Wolf, Frederik; Tuinenburg, Obbe A.; Staal, Arie
    Earth’s hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global hydrological cycle. We identify four terrestrial moisture recycling hubs: the Amazon Basin, the Congo Rainforest, South Asia and the Indonesian Archipelago. Network motifs reveal contrasting functioning of these regions, where the Amazon strongly relies on directed connections (feed-forward loops) for moisture redistribution and the other hubs on reciprocal moisture connections (zero loops and neighboring loops). We conclude that Earth’s moisture recycling hubs are characterized by specific topologies shaping heterogeneous effects of land-use changes and climatic warming on precipitation patterns.
  • Item
    Global crop yields can be lifted by timely adaptation of growing periods to climate change
    ([London] : Nature Publishing Group UK, 2022) Minoli, Sara; Jägermeyr, Jonas; Asseng, Senthold; Urfels, Anton; Müller, Christoph
    Adaptive management of crop growing periods by adjusting sowing dates and cultivars is one of the central aspects of crop production systems, tightly connected to local climate. However, it is so far underrepresented in crop-model based assessments of yields under climate change. In this study, we integrate models of farmers’ decision making with biophysical crop modeling at the global scale to simulate crop calendars adaptation and its effect on crop yields of maize, rice, sorghum, soybean and wheat. We simulate crop growing periods and yields (1986-2099) under counterfactual management scenarios assuming no adaptation, timely adaptation or delayed adaptation of sowing dates and cultivars. We then compare the counterfactual growing periods and corresponding yields at the end of the century (2080-2099). We find that (i) with adaptation, temperature-driven sowing dates (typical at latitudes >30°N-S) will have larger shifts than precipitation-driven sowing dates (at latitudes <30°N-S); (ii) later-maturing cultivars will be needed, particularly at higher latitudes; (iii) timely adaptation of growing periods would increase actual crop yields by ~12%, reducing climate change negative impacts and enhancing the positive CO2 fertilization effect. Despite remaining uncertainties, crop growing periods adaptation require consideration in climate change impact assessments.
  • Item
    On the influence of density and morphology on the Urban Heat Island intensity
    ([London] : Nature Publishing Group UK, 2020) Li, Yunfei; Schubert, Sebastian; Kropp, Jürgen P.; Rybski, Diego
    The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios.
  • Item
    Global irrigation contribution to wheat and maize yield
    ([London] : Nature Publishing Group UK, 2021) Wang, Xuhui; Müller, Christoph; Elliot, Joshua; Mueller, Nathaniel D.; Ciais, Philippe; Jägermeyr, Jonas; Gerber, James; Dumas, Patrice; Wang, Chenzhi; Yang, Hui; Li, Laurent; Deryng, Delphine; Folberth, Christian; Liu, Wenfeng; Makowski, David; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Schmid, Erwin; Jeong, Sujong; Zhou, Feng; Piao, Shilong
    Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.