Search Results

Now showing 1 - 5 of 5
  • Item
    Runge--Kutta methods for rough differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Redmann, Martin; Riedel, Sebastian
    We study Runge-Kutta methods for rough differential equations which can be used to calculate solutions to stochastic differential equations driven by processes that are rougher than a Brownian motion. We use a Taylor series representation (B-series) for both the numerical scheme and the solution of the rough differential equation in order to determine conditions that guarantee the desired order of the local error for the underlying Runge-Kutta method. Subsequently, we prove the order of the global error given the local rate. In addition, we simplify the numerical approximation by introducing a Runge-Kutta scheme that is based on the increments of the driver of the rough differential equation. This simplified method can be easily implemented and is computational cheap since it is derivative-free. We provide a full characterization of this implementable Runge-Kutta method meaning that we provide necessary and sufficient algebraic conditions for an optimal order of convergence in case that the driver, e.g., is a fractional Brownian motion with Hurst index 1/4 < H ≤ 1/2. We conclude this paper by conducting numerical experiments verifying the theoretical rate of convergence.
  • Item
    The geometry of controlled rough paths
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Varzaneh, Mazyar Ghani; Riedel, Sebastian; Schmeding, Alexander; Tapia, Nikolas
    We prove that the spaces of controlled (branched) rough paths of arbitrary order form a continuous field of Banach spaces. This structure has many similarities to an (infinite-dimensional) vector bundle and allows to define a topology on the total space, the collection of all controlled path spaces, which turns out to be Polish in the geometric case. The construction is intrinsic and based on a new approximation result for controlled rough paths. This framework turns well-known maps such as the rough integration map and the Itô-Lyons map into continuous (structure preserving) mappings. Moreover, it is compatible with previous constructions of interest in the stability theory for rough integration.
  • Item
    Optimal stopping with signatures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Hager, Paul; Riedel, Sebastian; Schoenmakers, John G. M.
    We propose a new method for solving optimal stopping problems (such as American option pricing in finance) under minimal assumptions on the underlying stochastic process. We consider classic and randomized stopping times represented by linear functionals of the associated rough path signature, and prove that maximizing over the class of signature stopping times, in fact, solves the original optimal stopping problem. Using the algebraic properties of the signature, we can then recast the problem as a (deterministic) optimization problem depending only on the (truncated) expected signature. The only assumption on the process is that it is a continuous (geometric) random rough path. Hence, the theory encompasses processes such as fractional Brownian motion which fail to be either semi-martingales or Markov processes.
  • Item
    A dynamical theory for singular stochastic delay differential equations II: Nonlinear equations and invariant manifolds
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ghani Varzaneh, Mazyar; Riedel, Sebastian
    Building on results obtained in [GVRS], we prove Local Stable and Unstable Manifold Theorems for nonlinear, singular stochastic delay differential equations. The main tools are rough paths theory and a semi-invertible Multiplicative Ergodic Theorem for cocycles acting on measurable fields of Banach spaces obtained in [GVR].
  • Item
    Rough invariance principle for delayed regenerative processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Orenshtein, Tal
    We derive an invariance principle for the lift to the rough path topology of stochastic processes with delayed regenerative increments under an optimal moment condition. An interesting feature of the result is the emergence of area anomaly, a correction term in the second level of the limiting rough path which is identified as the average stochastic area on a regeneration interval. A few applications include random walks in random environment and additive functionals of recurrent Markov chains. The result is formulated in the p-variation settings, where a rough Donsker Theorem is available under the second moment condition. The key renewal theorem is applied to obtain an optimal moment condition.