Search Results

Now showing 1 - 2 of 2
  • Item
    Phase formation and high-temperature stability of very thin co-sputtered Ti-Al and multilayered Ti/Al films on thermally oxidized si substrates
    (Basel : MDPI AG, 2020) Seifert, M.; Lattner, E.; Menzel, S.B.; Oswald, S.; Gemming, T.
    Ti-Al thin films with a thickness of 200 nm were prepared either by co-sputtering from elemental Ti and Al targets or as Ti/Al multilayers with 10 and 20 nm individual layer thickness on thermally oxidized Si substrates. Some of the films were covered with a 20-nm-thick SiO2 layer, which was used as an oxidation protection against the ambient atmosphere. The films were annealed at up to 800 °C in high vacuum for 10 h, and the phase formation as well as the film architecture was analyzed by X-ray diffraction, cross section, and transmission electron microscopy, as well as Auger electron and X-ray photoelectron spectroscopy. The results reveal that the co-sputtered films remained amorphous after annealing at 600 °C independent on the presence of the SiO2 cover layer. In contrast to this, the γ-TiAl phase was formed in the multilayer films at this temperature. After annealing at 800 °C, all films were degraded completely despite the presence of the cover layer. In addition, a strong chemical reaction between the Ti and SiO2 of the cover layer and the substrate took place, resulting in the formation of Ti silicide. In the multilayer samples, this reaction already started at 600 °C.
  • Item
    Spin pumping at interfaces with ferro- and paramagnetic Fe60Al40films acting as spin source and spin sink
    (Melville, NY : American Inst. of Physics, 2022) Strusch, T.; Lenz, K.; Meckenstock, R.; Bali, R.; Ehrler, J.; Lindner, J.; Fassbender, J.; Farle, M.; Potzger, K.; Semisalova, A.
    We present a study of spin pumping efficiency and determine the spin mixing conductance and spin diffusion length in thin bilayer films based on 3d transition metal alloy Fe60Al40. Due to its magnetostructural phase transition, Fe60Al40 can be utilized as a ferromagnetic (FM) or paramagnetic (PM) material at the same temperature depending on its structural order; thus a thin Fe60Al40 film can act as a spin source or a spin sink when interfaced with a paramagnet or a ferromagnet, respectively. Ferromagnetic resonance measurements were performed in a frequency range of 5-35 GHz on bilayer films composed of FM-Fe60Al40/Pd and PM-Fe60Al40/Ni80Fe20 (permalloy). The increase in damping with the thickness of the paramagnetic layer was interpreted as a result of spin pumping into the paramagnet. We determine the spin mixing conductance g P d ↑↓ = (3.8 ± 0.5) × 10 18 m - 2 at the FM-Fe60Al40/Pd interface and the spin diffusion length λ P d = 9.1 ± 2.0 nm in Pd. For the PM-Fe60Al40/permalloy interface, we find a spin mixing conductance g F e A l ↑↓ = (2.1 ± 0.2) × 10 18 m - 2 and a spin diffusion length λ F e A l = 11.9 ± 0.2 nm for PM-Fe60Al40. The demonstrated bi-functionality of the Fe60Al40 alloy in spin pumping structures may be promising for spintronic applications.