Search Results

Now showing 1 - 10 of 15
  • Item
    Coherent response of the Indian Monsoon Rainfall to Atlantic Multi-decadal Variability over the last 2000 years
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Naidu, Pothuri Divakar; Ganeshram, Raja; Bollasina, Massimo A.; Panmei, Champoungam; Nürnberg, Dirk; Donges, Jonathan F.
    Indian Summer Monsoon (ISM) rainfall has a direct effect on the livelihoods of two billion people in the Indian-subcontinent. Yet, our understanding of the drivers of multi-decadal variability of the ISM is far from being complete. In this context, large-scale forcing of ISM rainfall variability with multi-decadal resolution over the last two millennia is investigated using new records of sea surface salinity (δ18Ow) and sea surface temperatures (SSTs) from the Bay of Bengal (BoB). Higher δ18Ow values during the Dark Age Cold Period (1550 to 1250 years BP) and the Little Ice Age (700 to 200 years BP) are suggestive of reduced ISM rainfall, whereas lower δ18Ow values during the Medieval Warm Period (1200 to 800 years BP) and the major portion of the Roman Warm Period (1950 to 1550 years BP) indicate a wetter ISM. This variability in ISM rainfall appears to be modulated by the Atlantic Multi-decadal Oscillation (AMO) via changes in large-scale thermal contrast between the Asian land mass and the Indian Ocean, a relationship that is also identifiable in the observational data of the last century. Therefore, we suggest that inter-hemispheric scale interactions between such extra tropical forcing mechanisms and global warming are likely to be influential in determining future trends in ISM rainfall.
  • Item
    Epidemics with mutating infectivity on small-world networks
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Rüdiger, Sten; Plietzsch, Anton; Sagués, Francesc; Sokolov, Igor M.; Kurths, Jürgen
    Epidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent’s infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation. © 2020, The Author(s).
  • Item
    Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Salack, Seyni; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, Moumini; Giannini, Alessandra
    The regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
  • Item
    Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood–brain barrier leakage
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Runnova, Anastasiya; Zhuravlev, Maksim; Ukolov, Rodion; Blokhina, Inna; Dubrovski, Alexander; Lezhnev, Nikita; Sitnikova, Evgeniya; Saranceva, Elena; Kiselev, Anton; Karavaev, Anatoly; Selskii, Anton; Semyachkina-Glushkovskaya, Oxana; Penzel, Thomas; Kurths, Jurgen
    A new approach for detection oscillatory patterns and estimation of their dynamics based by a modified CWT skeleton method is presented. The method opens up additional perspectives for the analysis of subtle changes in the oscillatory activity of complex nonstationary signals. The method was applied to analyze unique experimental signals obtained in usual conditions and after the non-invasive increase in the blood–brain barrier (BBB) permeability in 10 male Wistar rats. The results of the wavelet-analysis of electrocorticography (ECoG) recorded in a normal physiological state and after an increase in the BBB permeability of animals demonstrate significant changes between these states during wakefulness of animals and an essential smoothing of these differences during sleep. Sleep is closely related to the processes of observed changes in the BBB permeability.
  • Item
    Robustly forecasting maize yields in Tanzania based on climatic predictors
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Laudien, Rahel; Schauberger, Bernhard; Makowski, David; Gornott, Christoph
    Seasonal yield forecasts are important to support agricultural development programs and can contribute to improved food security in developing countries. Despite their importance, no operational forecasting system on sub-national level is yet in place in Tanzania. We develop a statistical maize yield forecast based on regional yield statistics in Tanzania and climatic predictors, covering the period 2009–2019. We forecast both yield anomalies and absolute yields at the sub-national scale about 6 weeks before the harvest. The forecasted yield anomalies (absolute yields) have a median Nash–Sutcliffe efficiency coefficient of 0.72 (0.79) in the out-of-sample cross validation, which corresponds to a median root mean squared error of 0.13 t/ha for absolute yields. In addition, we perform an out-of-sample variable selection and produce completely independent yield forecasts for the harvest year 2019. Our study is potentially applicable to other countries with short time series of yield data and inaccessible or low quality weather data due to the usage of only global climate data and a strict and transparent assessment of the forecasting skill.
  • Item
    Dynamic Network Characteristics of Power-electronics-based Power Systems
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Ji, Yuxi; He, Wei; Cheng, Shijie; Kurths, Jürgen; Zhan, Meng
    Power flow studies in traditional power systems aim to uncover the stationary relationship between voltage amplitude and phase and active and reactive powers; they are important for both stationary and dynamic power system analysis. With the increasing penetration of large-scale power electronics devices including renewable generations interfaced with converters, the power systems become gradually power-electronics-dominant and correspondingly their dynamical behavior changes substantially. Due to the fast dynamics of converters, such as AC current controller, the quasi-stationary state approximation, which has been widely used in power systems, is no longer appropriate and should be reexamined. In this paper, for a better description of network characteristics, we develop a novel concept of dynamic power flow and uncover an explicit dynamic relation between the instantaneous powers and the voltage vectors. This mathematical relation has been well verified by simulations on transient analysis of a small power-electronics-based power system, and a small-signal frequency-domain stability analysis of a voltage source converter connected to an infinitely strong bus. These results demonstrate the applicability of the proposed method and shed an improved light on our understanding of power-electronics-dominant power systems, whose dynamical nature remains obscure.
  • Item
    Regions of intensification of extreme snowfall under future warming
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Quante, Lennart; Willner, Sven N.; Middelanis, Robin; Levermann, Anders
    Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.
  • Item
    Climate change and specialty coffee potential in Ethiopia
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Chemura, Abel; Mudereri, Bester Tawona; Yalew, Amsalu Woldie; Gornott, Christoph
    Current climate change impact studies on coffee have not considered impact on coffee typicities that depend on local microclimatic, topographic and soil characteristics. Thus, this study aims to provide a quantitative risk assessment of the impact of climate change on suitability of five premium specialty coffees in Ethiopia. We implement an ensemble model of three machine learning algorithms to predict current and future (2030s, 2050s, 2070s, and 2090s) suitability for each specialty coffee under four Shared Socio-economic Pathways (SSPs). Results show that the importance of variables determining coffee suitability in the combined model is different from those for specialty coffees despite the climatic factors remaining more important in determining suitability than topographic and soil variables. Our model predicts that 27% of the country is generally suitable for coffee, and of this area, only up to 30% is suitable for specialty coffees. The impact modelling showed that the combined model projects a net gain in coffee production suitability under climate change in general but losses in five out of the six modelled specialty coffee growing areas. We conclude that depending on drivers of suitability and projected impacts, climate change will significantly affect the Ethiopian speciality coffee sector and area-specific adaptation measures are required to build resilience.
  • Item
    Universality in spectral condensation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pavithran, Induja; Unni, Vishnu R.; Varghese, Alan J.; Premraj, D.; Sujith, R. I.; Vijayan, C.; Saha, Abhishek; Marwan, Norbert; Kurths, Jürgen
    Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study its occurrence in fluid mechanical, optical and electronic systems. We define a set of spectral measures to quantify this condensation spanning several dynamical systems. Further, we uncover an inverse power law behaviour of spectral measures with the power corresponding to the dominant peak in the power spectrum in all the aforementioned systems.
  • Item
    Decay radius of climate decision for solar panels in the city of Fresno, USA
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Barton-Henry, Kelsey; Wenz, Leonie; Levermann, Anders
    To design incentives towards achieving climate mitigation targets, it is important to understand the mechanisms that affect individual climate decisions such as solar panel installation. It has been shown that peer effects are important in determining the uptake and spread of household photovoltaic installations. Due to coarse geographical data, it remains unclear whether this effect is generated through geographical proximity or within groups exhibiting similar characteristics. Here we show that geographical proximity is the most important predictor of solar panel implementation, and that peer effects diminish with distance. Using satellite imagery, we build a unique geo-located dataset for the city of Fresno to specify the importance of small distances. Employing machine learning techniques, we find the density of solar panels within the shortest measured radius of an address is the most important factor in determining the likelihood of that address having a solar panel. The importance of geographical proximity decreases with distance following an exponential curve with a decay radius of 210 meters. The dependence is slightly more pronounced in low-income groups. These findings support the model of distance-related social diffusion, and suggest priority should be given to seeding panels in areas where few exist.