Search Results

Now showing 1 - 3 of 3
  • Item
    Structural and Chemical Hierarchy in Hydroxyapatite Coatings
    (Basel : MDPI, 2020) Gross, Karlis A.; Petzold, Christiane; Pluduma-LaFarge, Liene; Kumermanis, Maris; HAugen, HÃ¥vard J.
    Hydroxyapatite coatings need similarly shaped splats as building blocks and then a homogeneous microstructure to unravel the structural and chemical hierarchy for more refined improvements to implant surfaces. Coatings were thermally sprayed with differently sized powders (20–40, 40–63 and 63–80 µm) to produce flattened homogeneous splats. The surface was characterized for splat shape by profilometry and Atomic force microscopy (AFM), crystal size by AFM, crystal orientation by X-ray diffraction (XRD) and structural variations by XRD. Chemical composition was assessed by phase analysis, but variations in chemistry were detected by XRD and Raman spectroscopy. The resulting surface electrical potential was measured by Kelvin probe AFM. Five levels of structural hierarchy were suggested: the coating, the splat, oriented crystals, alternate layers of oxyapatite and hydroxyapatite (HAp) and the suggested anion orientation. Chemical hierarchy was present over a lower range of order for smaller splats. Coatings made from smaller splats exhibited a greater electrical potential, inferred to arise from oxyapatite, and supplemented by ordered OH− ions in a rehydroxylated surface layer. A model has been proposed to show the influence of structural hierarchy on the electrical surface potential. Structural hierarchy is proposed as a means to further refine the properties of implant surfaces.
  • Item
    Self-Assembly of Polymer-Modified FePt Magnetic Nanoparticles and Block Copolymers
    (Basel : MDPI, 2023) Hartmann, Frank; Bitsch, Martin; Niebuur, Bart-Jan; Koch, Marcus; Kraus, Tobias; Dietz, Christian; Stark, Robert W.; Everett, Christopher R.; Müller-Buschbaum, Peter; Janka, Oliver; Gallei, Markus
    The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films.
  • Item
    Can One Series of Self-Organized Nanoripples Guide Another Series of Self-Organized Nanoripples during Ion Bombardment: From the Perspective of Power Spectral Density Entropy?
    (Basel : MDPI, 2023) Li, Hengbo; Li, Jinyu; Yang, Gaoyuan; Liu, Ying; Frost, Frank; Hong, Yilin
    Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of nanoripples is an outstanding issue to be overcome, similar to other self-organization methods. In this study, the IB-induced nanoripples on bilayer systems with enhanced quality are revisited from the perspective of guided self-organization. First, power spectral density (PSD) entropy is introduced to evaluate the degree of ordering of the irradiated nanoripples, which is calculated based on the PSD curve of an atomic force microscopy image (i.e., the Fourier transform of the surface height. The PSD entropy can characterize the degree of ordering of nanoripples). The lower the PSD entropy of the nanoripples is, the higher the degree of ordering of the nanoripples. Second, to deepen the understanding of the enhanced quality of nanoripples on bilayer systems, the temporal evolution of the nanoripples on the photoresist (PR)/antireflection coating (ARC) and Au/ARC bilayer systems are compared with those of single PR and ARC layers. Finally, we demonstrate that a series of intrinsic IB-induced nanoripples on the top layer may act as a kind of self-organized template to guide the development of another series of latent IB-induced nanoripples on the underlying layer, aiming at improving the ripple ordering. The template with a self-organized nanostructure may alleviate the critical requirement for periodic templates with a small period of ~100 nm. The work may also provide inspiration for guided self-organization in other fields.