Search Results

Now showing 1 - 4 of 4
  • Item
    A rigorous derivation and energetics of a wave equation with fractional damping
    (Basel : Springer, 2021) Mielke, Alexander; Netz, Roland R.; Zendehroud, Sina
    We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water–air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy–dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally damped wave equation with a time derivative of order 3/2.
  • Item
    An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators
    (Basel : Springer, 2021) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A2r and B2σ (in the spectral sense) of general linear operators A and B, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L2(Ω), for some bounded and smooth domain Ω⊂R3, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B2σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.
  • Item
    On periodic solutions for one-phase and two-phase problems of the Navier–Stokes equations
    (Basel : Springer, 2020) Eiter, Thomas; Kyed, Mads; Shibata, Yoshihiro
    This paper is devoted to proving the existence of time-periodic solutions of one-phase or two-phase problems for the Navier–Stokes equations with small periodic external forces when the reference domain is close to a ball. Since our problems are formulated in time-dependent unknown domains, the problems are reduced to quasilinear systems of parabolic equations with non-homogeneous boundary conditions or transmission conditions in fixed domains by using the so-called Hanzawa transform. We separate solutions into the stationary part and the oscillatory part. The linearized equations for the stationary part have eigen-value 0, which is avoided by changing the equations with the help of the necessary conditions for the existence of solutions to the original problems. To treat the oscillatory part, we establish the maximal Lp–Lq regularity theorem of the periodic solutions for the system of parabolic equations with non-homogeneous boundary conditions or transmission conditions, which is obtained by the systematic use of R-solvers developed in Shibata (Diff Int Eqns 27(3–4):313–368, 2014; On the R-bounded solution operators in the study of free boundary problem for the Navier–Stokes equations. In: Shibata Y, Suzuki Y (eds) Springer proceedings in mathematics & statistics, vol. 183, Mathematical Fluid Dynamics, Present and Future, Tokyo, Japan, November 2014, pp 203–285, 2016; Comm Pure Appl Anal 17(4): 1681–1721. https://doi.org/10.3934/cpaa.2018081, 2018; R boundedness, maximal regularity and free boundary problems for the Navier Stokes equations, Preprint 1905.12900v1 [math.AP] 30 May 2019) to the resolvent problem for the linearized equations and the transference theorem obtained in Eiter et al. (R-solvers and their application to periodic Lp estimates, Preprint in 2019) for the Lp boundedness of operator-valued Fourier multipliers. These approaches are the novelty of this paper. © 2020, The Author(s).
  • Item
    Well-posedness analysis of multicomponent incompressible flow models
    (Basel : Springer, 2021) Bothe, Dieter; Druet, Pierre-Etienne
    In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.