Search Results

Now showing 1 - 7 of 7
  • Item
    Quantum-critical scale invariance in a transition metal alloy
    (Berlin : Springer Nature, 2020) Nakajima, Yasuyuki; Metz, Tristin; Eckberg, Christopher; Kirshenbaum, Kevin; Hughes, Alex; Wang, Renxiong; Wang, Limin; Saha, Shanta R.; Liu, I-Lin; Butch, Nicholas P.; Campbell, Daniel; Eo, Yun Suk; Graf, David; Liu, Zhonghao; Borisenko, Sergey V.; Zavalij, Peter Y.; Paglione, Johnpierre
    Quantum-mechanical fluctuations between competing phases induce exotic collective excitations that exhibit anomalous behavior in transport and thermodynamic properties, and are often intimately linked to the appearance of unconventional Cooper pairing. High-temperature superconductivity, however, makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe1/3Co1/3Ni1/3)2As2, indicative of quantum criticality at zero temperature and applied magnetic field. Beyond a linear-in-temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find a scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system unhindered by a pairing instability.
  • Item
    Strongly correlated superconductor with polytypic 3D Dirac points
    (Berlin : Springer Nature, 2020) Borisenko, Sergey; Bezguba, Volodymyr; Fedorov, Alexander; Kushnirenko, Yevhen; Voroshin, Vladimir; Sturza, Mihai; Aswartham, Saicharan
    Topological superconductors should be able to provide essential ingredients for quantum computing, but are very challenging to realize. Spin–orbit interaction in iron-based superconductors opens the energy gap between the p-states of pnictogen and d-states of iron very close to the Fermi level, and such p-states have been recently experimentally detected. Density-functional theory predicts existence of topological surface states within this gap in FeTe1−xSex making it an attractive candidate material. Here we use synchrotron-based angle-resolved photoemission spectroscopy and band structure calculations to demonstrate that FeTe1−xSex (x = 0.45) is a superconducting 3D Dirac semimetal hosting type-I and type-II Dirac points and that its electronic structure remains topologically trivial. We show that the inverted band gap in FeTe1−xSex can possibly be realized by further increase of Te content, but strong correlations reduce it to a sub-meV size, making the experimental detection of this gap and corresponding topological surface states very challenging, not to mention exact matching with the Fermi level. On the other hand, the p–d and d–d interactions are responsible for the formation of extremely flat band at the Fermi level pointing to its intimate relation with the mechanism of high-Tc superconductivity in IBS.
  • Item
    Extracting local nucleation fields in permanent magnets using machine learning
    (Berlin : Springer Nature, 2020) Gusenbauer, Markus; Oezelt, Harald; Fischbacher, Johann; Kovacs, Alexander; Zhao, Panpan; Woodcock, Thomas George; Schrefl, Thomas
    Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.
  • Item
    Nickelate superconductors - a renaissance of the one-band Hubbard model
    (Berlin : Springer Nature, 2020) Kitatani, Motoharu; Si, Liang; Janson, Oleg; Arita, Ryotaro; Zhong, Zhicheng; Held, Karsten
    The recently discovered nickelate superconductors appear, at first glance, to be even more complicated multi-orbital systems than cuprates. To identify the simplest model describing the nickelates, we analyse the multi-orbital system and find that it is instead the nickelates which can be described by a one-band Hubbard model, albeit with an additional electron reservoir and only around the superconducting regime. Our calculations of the critical temperature TC are in good agreement with experiment, and show that optimal doping is slightly below 20% Sr-doping. Even more promising than 3d nickelates are 4d palladates.
  • Item
    Engineering microrobots for targeted cancer therapies from a medical perspective
    (Berlin : Springer Nature, 2020) Schmidt, Christine K.; Medina-Sánchez, Mariana; Edmondson, Richard J.; Schmidt, Oliver G.
    Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.
  • Item
    Wettability control of polymeric microstructures replicated from laser-patterned stamps
    (Berlin : Springer Nature, 2020) Fu, Yangxi; Soldera, Marcos; Wang, Wei; Milles, Stephan; Deng, Kangfa; Voisiat, Bogdan; Nielsch, Kornelius; Lasagni, Andrés Fabian
    In this study, two-step approaches to fabricate periodic microstructures on polyethylene terephthalate (PET) and poly(methyl methacrylate) (PMMA) substrates are presented to control the wettability of polymeric surfaces. Micropillar arrays with periods between 1.6 and 4.6 µm are patterned by plate-to-plate hot embossing using chromium stamps structured by four-beam Direct Laser Interference Patterning (DLIP). By varying the laser parameters, the shape, spatial period, and structure height of the laser-induced topography on Cr stamps are controlled. After that, the wettability properties, namely the static, advancing/receding contact angles (CAs), and contact angle hysteresis were characterized on the patterned PET and PMMA surfaces. The results indicate that the micropillar arrays induced a hydrophobic state in both polymers with CAs up to 140° in the case of PET, without modifying the surface chemistry. However, the structured surfaces show high adhesion to water, as the droplets stick to the surfaces and do not roll down even upon turning the substrates upside down. To investigate the wetting state on the structured polymers, theoretical CAs predicted by Wenzel and Cassie-Baxter models for selected structured samples with different topographical characteristics are also calculated and compared with the experimental data.
  • Item
    Momentum dependent dxz/yz band splitting in LaFeAsO
    (Berlin : Springer Nature, 2020) Huh, S.S.; Kim, Y.S.; Kyung, W.S.; Jung, J.K.; Kappenberger, R.; Aswartham, S.; Büchner, B.; Ok, J.M.; Kim, J.S.; Dong, C.; Hu, J.P.; Cho, S.H.; Shen, D.W.; Denlinger, J.D.; Kim, Y.K.; Kim, C.
    The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the Γ and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the Γ and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the Γ point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors.