Search Results

Now showing 1 - 10 of 49
  • Item
    Specific Signal Enhancement on an RNA-Protein Interface by Dynamic Nuclear Polarization
    (Weinheim : Wiley-VCH, 2023) Aladin, Victoria; Sreemantula, Arun K.; Biedenbänder, Thomas; Marchanka, Alexander; Corzilius, Björn
    Sensitivity and specificity are both crucial for the efficient solid-state NMR structure determination of large biomolecules. We present an approach that features both advantages by site-specific enhancement of NMR spectroscopic signals from the protein-RNA binding site within a ribonucleoprotein (RNP) by dynamic nuclear polarization (DNP). This approach uses modern biochemical techniques for sparse isotope labeling and exploits the molecular dynamics of 13C-labeled methyl groups exclusively present in the protein. These dynamics drive heteronuclear cross relaxation and thus allow specific hyperpolarization transfer across the biomolecular complex's interface. For the example of the L7Ae protein in complex with a 26mer guide RNA minimal construct from the box C/D complex in archaea, we demonstrate that a single methyl-nucleotide contact is responsible for most of the polarization transfer to the RNA, and that this specific transfer can be used to boost both NMR spectral sensitivity and specificity by DNP.
  • Item
    Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO2 with Epoxides Catalyzed by Phenol-Functionalized Phosphonium Salts
    (Weinheim : Wiley-VCH, 2021) Hu, Yuya; Wei, Zhihong; Frey, Anna; Kubis, Christoph; Ren, Chang-Yue; Spannenberg, Anke; Jiao, Haijun; Werner, Thomas
    A series of hydroxy-functionalized phosphonium salts were studied as bifunctional catalysts for the conversion of CO2 with epoxides under mild and solvent-free conditions. The reaction in the presence of a phenol-based phosphonium iodide proceeded via a first order rection kinetic with respect to the substrate. Notably, in contrast to the aliphatic analogue, the phenol-based catalyst showed no product inhibition. The temperature dependence of the reaction rate was investigated, and the activation energy for the model reaction was determined from an Arrhenius-plot (Ea =39.6 kJ mol-1 ). The substrate scope was also evaluated. Under the optimized reaction conditions, 20 terminal epoxides were converted at room temperature to the corresponding cyclic carbonates, which were isolated in yields up to 99 %. The reaction is easily scalable and was performed on a scale up to 50 g substrate. Moreover, this method was applied in the synthesis of the antitussive agent dropropizine starting from epichlorohydrin and phenylpiperazine. Furthermore, DFT calculations were performed to rationalize the mechanism and the high efficiency of the phenol-based phosphonium iodide catalyst. The calculation confirmed the activation of the epoxide via hydrogen bonding for the iodide salt, which facilitates the ring-opening step. Notably, the effective Gibbs energy barrier regarding this step is 97 kJ mol-1 for the bromide and 72 kJ mol-1 for the iodide salt, which explains the difference in activity.
  • Item
    Ruthenium-Catalyzed Site-Selective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles
    (Weinheim : Wiley-VCH, 2020) Li, Yang; Neumann, Helfried; Beller, Matthias
    Introducing (per)fluoroalkyl groups into arenes continues to be an interesting, but challenging area in organofluorine chemistry. We herein report an ortho-selective C−H perfluoroalkylation including trifluoromethylations of anilines and indoles without the need of protecting groups using RfI and RfBr as commercially available reagents. The availability and price of the starting materials and the inherent selectivity make this novel methodology attractive for the synthesis of diverse (per)fluoroalkylated building blocks, for example, for bioactive compounds and materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Metal/Metal Redox Isomerism Governed by Configuration
    (Weinheim : Wiley-VCH, 2020) Ludwig, Stephan; Helmdach, Kai; Hettenschmidt, Mareike; Oberem, Elisabeth; Rabeah, Jabor; Villinger, Alexander; Ludwig, Ralf; Seidel, Wolfram W.
    A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ-η2-C,C′-κ2-S,P-C2(PPh2)S}Ru(η5-C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side-on carbon P,S-chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like-isomer is oxidized at W while the unlike-isomer is oxidized at Ru, which is proven by IR, NIR and EPR-spectroscopy supported by spectro-electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ-η2-C,C′-κ2-S,P-C2(PPh2)S}Ru(η5-C5H5)-(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes
    (Weinheim : Wiley-VCH, 2021) Dankert, Fabian; Hänisch, Carsten von
    Siloxanes have evolved into a multi-million dollar business due to their manifold of commercial and industrial applications. As siloxanes have high hydrophobicity, low basicity, high flexibility and also high chemical inertness in common, their chemistry differs significantly from that of organic ethers. The discovery of organic crown ethers, for instance, is commonly accepted as the birth of synthetic host-guest chemistry. Regarding the chemical properties of siloxanes, cyclic siloxanes which formally resemble silicon analogues of crown ethers, have received considerably less interest in terms of their host-guest chemistry. Hence, only little is known about siloxane coordination chemistry in the chemical community and the number of published works in this field has been very low till lately. In the last few years, the field has significantly advanced and elegant methods were established to enable the Si−O−Si unit for coordination. This review therefore summarizes the recent developments in the field, recapitulates the historical aspects of siloxane coordination chemistry and describes the specific Si−O bond character with regard to different siloxane linkages. Implications on Si−O bond activation are included and the limits of siloxane coordination are redefined.
  • Item
    Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
    (Weinheim : Wiley-VCH, 2021) Dai, Xingchao; Wang, Xinzhi; Rabeah, Jabor; Kreyenschulte, Carsten; Brückner, Angelika; Shi, Feng
    The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3-Diynes
    (Weinheim : Wiley-VCH, 2020) Liu, Jiawang; Yang, Ji; Schneider, Carolin; Franke, Robert; Jackstell, Ralf; Beller, Matthias
    For the first time, the monoalkoxycarbonylation of easily available 1,3-diynes to give synthetically useful conjugated enynes has been realized. Key to success was the design and utilization of the new ligand 2,2′-bis(tert-butyl(pyridin-2-yl)phosphanyl)-1,1′-binaphthalene (Neolephos), which permits the palladium-catalyzed selective carbonylation under mild conditions, providing a general preparation of functionalized 1,3-enynes in good-to-high yields with excellent chemoselectivities. Synthetic applications that showcase the possibilities of this novel methodology include an efficient one-pot synthesis of 4-aryl-4H-pyrans as well as the rapid construction of various heterocyclic, bicyclic, and polycyclic compounds. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole-Transfer Agents
    (Weinheim : Wiley-VCH, 2021) Indra, Arindam; Beltrán-Suito, Rodrigo; Müller, Marco; Sivasankaran, Ramesh P.; Schwarze, Michael; Acharjya, Amitava; Pradhan, Bapi; Hofkens, Johan; Brückner, Angelika; Thomas, Arne; Menezes, Prashanth W.; Driess, Matthias
    Visible light-driven photocatalytic reduction of protons to H2 is considered a promising way of solar-to-chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2 ) evolution process. Here, for the first time, the hole-transfer dynamics from Pt-loaded sol-gel-prepared graphitic carbon nitride (Pt-sg-CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge-transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time-resolved photoluminescence and in situ electron paramagnetic resonance studies.
  • Item
    Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems
    (Weinheim : Wiley-VCH, 2021) Sprenger, Paul; Stehle, Matthias; Gaur, Abhijeet; Weiß, Jana; Brueckner, Dennis; Zhang, Yi; Garrevoet, Jan; Suuronen, Jussi‐Petteri; Thomann, Michael; Fischer, Achim; Grunwaldt, Jan‐Dierk; Sheppard, Thomas L.
    Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially-resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM-EDX and spatially-resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X-ray tomography with fluorescence, phase, and diffraction contrast. The identification and co-localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation
    (Weinheim : Wiley-VCH, 2021) Wöllner, Sebastian; Nowak, Timothy; Zhang, Gui-Rong; Rockstroh, Nils; Ghanem, Hanadi; Rosiwal, Stefan; Brückner, Angelika; Etzold, Bastian J. M.
    Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed. © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH