Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection

2021, Mohamed, Hager, Clemen, Ramona, Freund, Eric, Lackmann, Jan-Wilm, Wende, Kristian, Connors, Jennifer, Haddad, Elias K., Dampier, Will, Wigdahl, Brian, Miller, Vandana, Bekeschus, Sander, Krebs, Fred C., Kashanchi, Fatah

Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.

Loading...
Thumbnail Image
Item

Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying

2021, Schu, Moritz, Terriac, Emmanuel, Koch, Marcus, Paschke, Stephan, Lautenschläger, Franziska, Flormann, Daniel A.D.

The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.

Loading...
Thumbnail Image
Item

Evolutionary design of explainable algorithms for biomedical image segmentation

2023, Cortacero, Kévin, McKenzie, Brienne, Müller, Sabina, Khazen, Roxana, Lafouresse, Fanny, Corsaut, Gaëlle, Van Acker, Nathalie, Frenois, François-Xavier, Lamant, Laurence, Meyer, Nicolas, Vergier, Béatrice, Wilson, Dennis G., Luga, Hervé, Staufer, Oskar, Dustin, Michael L., Valitutti, Salvatore, Cussat-Blanc, Sylvain

An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.

Loading...
Thumbnail Image
Item

Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities

2021, Meng, Xia, Liu, Cong, Chen, Renjie, Sera, Francesco, Vicedo-Cabrera, Ana Maria, Milojevic, Ai, Guo, Yuming, Tong, Shilu, Coelho, Micheline de Sousa Zanotti Stagliorio, Saldiva, Paulo Hilario Nascimento, Lavigne, Eric, Correa, Patricia Matus, Ortega, Nicolas Valdes, Osorio, Samuel, Garcia, null, Kyselý, Jan, Urban, Aleš, Orru, Hans, Maasikmets, Marek, Jaakkola, Jouni J. K., Ryti, Niilo, Huber, Veronika, Schneider, Alexandra, Katsouyanni, Klea, Analitis, Antonis, Hashizume, Masahiro, Honda, Yasushi, Ng, Chris Fook Sheng, Nunes, Baltazar, Teixeira, João Paulo, Holobaca, Iulian Horia, Fratianni, Simona, Kim, Ho, Tobias, Aurelio, Íñiguez, Carmen, Forsberg, Bertil, Åström, Christofer, Ragettli, Martina S., Guo, Yue-Liang Leon, Pan, Shih-Chun, Li, Shanshan, Bell, Michelle L., Zanobetti, Antonella, Schwartz, Joel, Wu, Tangchun, Gasparrini, Antonio, Kan, Haidong

Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.

Loading...
Thumbnail Image
Item

Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)

2021, Strobbia, Pietro, Cupil-Garcia, Vanessa, Crawford, Bridget M., Fales, Andrew M., Pfefer, T. Joshua, Liu, Yang, Maiwald, Martin, Sumpf, Bernd, Vo-Dinh, Tuan

For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Loading...
Thumbnail Image
Item

Computational design and optimization of electro-physiological sensors

2021, Nittala, Aditya Shekhar, Karrenbauer, Andreas, Khan, Arshad, Kraus, Tobias, Steimle, Jürgen

Electro-physiological sensing devices are becoming increasingly common in diverse applications. However, designing such sensors in compact form factors and for high-quality signal acquisition is a challenging task even for experts, is typically done using heuristics, and requires extensive training. Our work proposes a computational approach for designing multi-modal electro-physiological sensors. By employing an optimization-based approach alongside an integrated predictive model for multiple modalities, compact sensors can be created which offer an optimal trade-off between high signal quality and small device size. The task is assisted by a graphical tool that allows to easily specify design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. They demonstrate that generated designs can achieve an optimal balance between the size of the sensor and its signal acquisition capability, outperforming expert generated solutions.

Loading...
Thumbnail Image
Item

Breast Cancer Stem Cell–Derived Tumors Escape from γδ T-cell Immunosurveillance In Vivo by Modulating γδ T-cell Ligands

2023, Raute, Katrin, Strietz, Juliane, Parigiani, Maria Alejandra, Andrieux, Geoffroy, Thomas, Oliver S., Kistner, Klaus M., Zintchenko, Marina, Aichele, Peter, Hofmann, Maike, Zhou, Houjiang, Weber, Wilfried, Boerries, Melanie, Swamy, Mahima, Maurer, Jochen, Minguet, Susana

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γ δ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γ δ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γ δ T cells. Indeed, neither promigratory engineered γ δ T cells, nor anti–PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γ δ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.