Search Results

Now showing 1 - 2 of 2
  • Item
    Tuning the Local Availability of VEGF within Glycosaminoglycan-Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis
    (Weinheim : Wiley-VCH, 2020) Limasale, Yanuar Dwi Putra; Atallah, Passant; Werner, Carsten; Freudenberg, Uwe; Zimmermann, Ralf
    Incorporation of sulfated glycosaminoglycans (GAGs) into cell-instructive polymer networks is shown to be instrumental in controlling the diffusivity and activity of growth factors. However, a subtle balance between local retention and release of the factors is needed to effectively direct cell fate decisions. To quantitatively unravel material characteristics governing these key features, the GAG content and the GAG sulfation pattern of star-shaped poly(ethylene glycol) (starPEG)–GAG hydrogels are herein tuned to control the local availability and bioactivity of GAG-affine vascular endothelial growth factor (VEGF165). Hydrogels containing varying concentrations of heparin or heparin derivatives with different sulfation pattern are prepared and thoroughly characterized for swelling, mechanical properties, and growth factor transport. Mathematical models are developed to predict the local concentration and spatial distribution of free and bound VEGF165 within the gel matrices. The results of simulation and experimental studies concordantly reveal how the GAG concentration and sulfation pattern determine the local availability of VEGF165 within the cell-instructive hydrogels and how the factor—in interplay with cell-instructive gel properties—determines the formation and spatial organization of capillary networks of embedded human vascular endothelial cells. Taken together, this study exemplifies how mathematical modeling and rational hydrogel design can be combined to pave the way for precision tissue engineering. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A Practical Guide to the Automated Analysis of Vascular Growth, Maturation and Injury in the Brain
    (Lausanne : Frontiers Media, 2020) Rust, Ruslan; Kirabali, Tunahan; Grönnert, Lisa; Dogancay, Berre; Limasale, Yanuar D.P.; Meinhardt, Andrea; Werner, Carsten; Laviña, Bàrbara; Kulic, Luka; Nitsch, Roger M.; Tackenberg, Christian; Schwab, Martin E.
    The distinct organization of the brain’s vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ). In particular, we developed a practical guide to reliably measure aspects of growth, repair and maturation of the brain’s vasculature during development and neurovascular disease in mice and humans. The script can be used to assess the effects of different external factors including pharmacological treatments or disease states. Moreover, the procedure is expandable to blood vessels of other organs and vascular in vitro models. © Copyright © 2020 Rust, Kirabali, Grönnert, Dogancay, Limasale, Meinhardt, Werner, Laviña, Kulic, Nitsch, Tackenberg and Schwab.